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EXECUTIVE SUMMARY 

Secondary crashes occur in the aftermath of a primary crash, increasing the likelihood 

of subsequent crashes, reducing highway capacity, causing high-density queues, and 

increasing travel time uncertainty. In this study, we developed a self-exciting temporal point 

process model to evaluate and categorize the crash event dataset into primary and secondary 

crashes. The model uses a background rate function to represent primary crashes and a self-

exciting function to represent secondary crashes. We applied the model to crash data from the 

Florida Department of Transportation on Interstate-4 (I-4) highway from 2015 to 2017 to 

determine the model parameters. Based on the model parameter, the probability of given crash 

to be a secondary crash and the queue time is calculated. The model investigated crash events 

in six different cities on I-4. Initially, the model was fit using a stationary background rate. 

However, the result from the stationary background rate model does not sufficiently fit the data 

since it is based on the premise that crash events are invariant to any external factors. Therefore 

to fit the periodic variation of traffic and crash incidents for weekly and daily trends, we 

modeled a sinusoidal non-stationary function and a piecewise non-stationary function. The 

goodness-of-fit of the models was assessed using Akaike Information Criterion (AIC) values 

for each model. When comparing the performance of the stationary and non-stationary 

background rate model, the AIC values for stationary background rate are greater. This shows 

that the stationary background rate model has a higher prediction error when compared to other 

models. We were able to fit the crash data with non-stationary background rate models 

accurately and generate queue time curves with peaks on Fridays and troughs on Sundays, 
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which matched the crash data. Furthermore, the sinusoidal background rate model outperforms 

the piecewise function. Using the sinusoidal non-stationary background rate model, we find 

that secondary crash events account for 3.38 percent to 15.09 percent of the traffic incidents 

on the I-4. An average queue time of 82.5 minutes is obtained for the non-stationary 

background rate model using the sinusoidal function. The results of the point process model 

compare favorably to those of other models for identifying secondary crashes in literature. The 

proposed model can be used to create policies and countermeasures that aim to reduce the risk 

of secondary crashes. Based on the probability distribution of secondary crashes and the 

average queue time, the proposed model's results can be utilized as a reference to inform 

Traffic Incident Management (TIM) to clear the traffic incident scene. The exposure of 

secondary crashes is reduced drastically by clearing the crash scene effectively. 
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1. INTRODUCTION 

Highway crashes can have an immediate and significant impact on the safety of 

individuals and the mobility of goods. In 2015, motor vehicle accidents resulted in over 

35,000 deaths and 2.4 million injuries in the United States [1]. In 2016, these figures 

increased to over 37,000 deaths on United States roadways [2]. Drivers near the crash 

area must react rapidly to a dynamic and unpredictable environment in the immediate 

aftermath of a crash. Vehicles appear to queue up on the highway route as they reach 

the crash site. Furthermore, the crash scene itself is a distraction to drivers in both 

directions. This situation can increase the likelihood of yet another crash. 

Secondary crashes are incidents that occur as a result of a primary accident. 

According to estimates, almost ten percent of highway crashes are categorized as 

secondary [3]. The victims of the primary crash, as well as the first responders 

dispatched to assist them, are in grave danger in these secondary crashes. Many 

organizations have missions and forums that encourage drivers and emergency 

responders to learn about the value of “move over” laws for protecting individuals 

employed on the side of the road. Comprehending why secondary crashes occur and 

predicting where and when they occur will help protect vulnerable road users, including 

primary crash victims and emergency responders. 

Given the difficulties in modeling secondary crashes, we plan to utilize a new 

modeling approach to study secondary crashes based on a point process model. 

Secondary crashes exhibit characteristics of social contagion. The traffic and road 
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conditions developed during the primary crash lead to secondary crashes in a manner 

similar to contacts with an infected individual leading to further disease spread. Such 

diffusion of events or information from a primary event has been studied using Hawkes 

point process models [1-5]. We have recently utilized epidemiological models to study 

the spread of fuel shortages during hurricane evacuations [6]. These studies point to the 

success of epidemiological models in examining the dynamics of social contagion. 

We propose to utilize a self-exciting point process model commonly used in the 

study of earthquakes [7], known as Epidemic Type After Shock (ETAS) model to 

quantify secondary crashes from a traffic dataset. The self-exciting point process 

models are commonly used to classify the dataset of discrete events into background 

and offspring events. For example, in case of earthquakes, the background events are 

the independent mainshock events, while the dependent aftershocks are considered to 

be secondary events. While there have been several modeling advances, and code 

developments focusing on seismic modeling [7-11], several researchers have applied 

this concept to other clustered societal problems. For example, Mohler et al. [3] used 

the self-exciting point process model to understand crime events; Zhao et al. [11] used 

a self-exciting point process model to predict tweet popularity by modeling information 

cascades. Dassios et al. [12] modeled the contagion risks or clustering events in finance 

and insurance while Bertozzi et al. [13] used Hawke’s point process models to 

understand the email communication between individuals in an organization. Towers 

et al. [5] employed the same approach to identify the contagion in mass killings and 
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school shootings. Lewis et al. [14] characterized the temporal patterns of violent 

civilian deaths in Iraq using a self-exciting point process model.  

In recent studies, the impact on the frequency of secondary crashes by a primary 

crash on highways is evaluated using Zero Inflated Ordered Probit (ZIOP) regression 

model [15] using real-time traffic flow conditions to correlate the risk of several 

secondary crashes with real-time traffic, geometric, weather and primary crash 

characteristics following a primary crash. Kitali et al. [16] used real-time speed data 

from Blue Toad paired devices to identify secondary crashes. Sarker et al. [17] 

proposed Generalized Ordered Response Probit (GORP) models that would allow us 

to predict the frequency of secondary crashes occurrence based on segment and traffic 

characteristics. Zhang et al. [18] developed a network-based clustering algorithm based 

on crowdsourced Waze user reports from the primary crash, with any subsequent 

crashes occurring inside the cluster of primary crash is considered to be secondary 

crash. Salek et al. [19] presents a method for assessing the likelihood of freeway 

secondary crashes with Adaptive Signal Control Systems (ASCS) deployed on 

alternate routes. 

In this paper, a novel approach for identifying secondary crashes using the self-

exciting point process model is formulated. To account for periodic variations in traffic 

events, corresponding periodic background rate variations are introduced. The model 

is employed to analyze the crash events on a dataset corresponding to Interstate 

Highway-4 (I-4) in Florida, USA. The results from the point process model compare 
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favorably with other models used to analyze secondary crashes. This approach provides 

a new statistical tool for analyzing this ubiquitous transportation problem. 

2. METHODOLOGY 

2.1. Traffic and Crash Data 

The crash data for this study is obtained from the Florida Department of Transportation 

(FDOT) Safety Office’s GIS Query Tool (SSOGIS) on Interstate4 (I-4) for the years 2015-

2017 [20]. The I-4 highway between Daytona Beach, FL and Tampa, FL is entirely located in 

the state of Florida, USA. All the crashes on this highway are listed in the FDOT Crash 

Analysis and Reporting database. The data reports several crash characteristics including crash 

date, crash time, longitude, latitude, weather condition, crash location, speed limit, type of 

injury, light condition, and surface condition of the road. This data does not identify if the crash 

events are primary or secondary. 

The crash dataset used in this research contains information on 6367, 6663 and 6133 

crash events on I-4 for the years 2015, 2016 and 2017 respectively. A temporal distribution of 

the crash data indicates that the highest number of crashes occurred during the evening rush-

hour, followed by morning rush-hour. Also, the highest number of crashes occurred on Fridays, 

and the lowest on Sundays. The histograms in Figure 1 show those variations. 
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Figure 1. Histograms showing the distribution of crashes according to (a) time and (b) day of 

the week. 
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2.2. Point Process Model Formulation 

In a self-excitation point process model, recent prior events increase the probability of 

another event happening in the near future. Primary crashes are often sites for reduced mobility 

which causes a shock wave in traffic flow. The shock waves are the byproduct of traffic 

congestion and queuing [21]. When a driver enters through a shockwave, one experiences a 

sudden change in vehicle speed, which often causes secondary accidents. Secondary accidents 

are also caused due to rubbernecking phenomena as the driver approaches the vicinity of the 

crash location site. Given a time crash database consisting of N crash events (𝑡𝑖), i = 1, …, N, 

representing respectively the time of the ith crash event, the conditional intensity function is 

given by: 

,

:

( ) ( )
i

A i

i t t

t g t t 


= + − (1) 

𝜆 is the limiting expected rate of crash events, given the history 𝐻𝑡 = {(𝑡𝑖): 𝑡𝑖 < 𝑡} of 

all crash events in a region S, up to time t. The model classifies crash events in the catalog data 

into two categories, primary crashes and secondary crashes. Primary crashes are assumed to 

occur independent of time at a rate µ > 0. 

𝑔𝐴,𝛼(𝑡 − 𝑡𝑖) is the probability density function (PDF) of the occurrence time of a 

secondary crash at time 𝑡𝑖 and is modeled as 

𝐴 ∗ 𝛼 ∗ 𝑒𝑥𝑝[−𝛼 ∗ (𝑡 − 𝑡𝑖)], 𝑡 > 𝑡𝑖 𝑔𝐴,𝛼(𝑡 − 𝑡𝑖) = { (2)
0 , 𝑡 ≤ 𝑡𝑖 

The conditional intensity function 𝜆(𝑡|𝐻𝑡) can now be expressed as, 
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(3) 
( )

:

( ) . i

i

t t

i t t

t A e


  
− −



= + 

Here, 𝛼 indicates the decay rate in time for the occurrence of secondary crashes while A 

represents the amount of excitation generated by the collection of prior events. Note that 𝑔𝐴,𝛼 

is the function describing the time lag 𝑡 − 𝑡𝑖 between a secondary crash and corresponding 

primary crash. The model is function of three unknown parameters θ = (µ, 𝐴, 𝛼). These 

parameters are determined through maximum likelihood estimation while fitting the model to 

the crash data. Given a time sequence of crash data consisting of N crash events 

{(𝑡𝑖), i = 1, … , N}, during a time interval [0, 𝑇] and in a region S, the log-likelihood function 

[22] is: 

𝑇 𝑁 𝑙(θ|𝐻𝑡) = ∑ 𝑙𝑜𝑔𝜆θ(𝑡𝑖|𝐻𝑡𝑖) − ∫ ∬ 𝜆θ(𝑡|𝐻𝑡)𝑑𝑡 (4)𝑖=1 0 𝑆 

To obtain the maximum likelihood estimate (MLE) of θ, the Davidon-Fletcher-Powell 

method is used as a gradient-based nonlinear optimization procedure [22]. A numerical 

approximation of the integral terms in the log-likelihood function is first computed. A 

probabilistic approach previously used for declustering an earthquake catalog [8] is used here 

to decluster the crash data and to obtain the primary crash rate µ. The probability that crash 

event i triggered crash event j is: 

𝑔𝐴,𝛼(𝑡𝑗−𝑡𝑖) 
, 𝑡𝑗 > 𝑡𝑖 

𝜆(𝑡𝑗|𝐻𝑡𝑗
)𝑝𝑖𝑗 = { (5) 

0 , 𝑡𝑗 ≤ 𝑡𝑖 
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𝑗−1
Hence, the probability of crash event j being a secondary crash is 𝑝𝑗 = ∑𝑖=1 𝑝𝑖𝑗. 

Consequently, the probability of crash event j being a primary crash is: 

1 − 𝑝𝑗 = 
µ 

(6)
𝜆(𝑡𝑗|𝐻𝑡𝑗

) 

Once the MLE of θ is found and the probability values 𝑝𝑗 of all N crash events are 

found, the crash events can be classified into primary crashes and their related secondary 

crashes. The maximum queue time for secondary crashes can then be extracted from the model. 

The queue time is the maximum time lag between primary crashes, and their related secondary 

crashes. 

2.3. Periodic Variation of the Background Function 

The model in equation (3) assumes a constant background rate. However, the 

crash data varies periodically on a weekly and daily basis, as shown in Figure 1. To 

examine this variation, a non-stationary background rate is introduced. Other 

researchers have used a similar approach. For example, when Lewis et al. [14] 

inspected the data on violent death in Iraq using a stationary background rate, the results 

failed to capture the upward trend over time; that issue was addressed using a non-

stationary background rate model. Fox et al. [23] used a nonstationary background rate 

to investigate daily and weekly email activity trends. 

To capture the periodic traffic and crash variations through the background rate, 

we used two functions: (a) a step function and (b) a sinusoidal function. A step function 

was used to model piecewise variation in background rate. This allows the background 

Epidemiological Models for Transportation Applications: Secondary Crashes        

10 



 

                                                      

 
 

   

  

  

 

 

 

   

 

   

 

   

                                                                

 

                                                     

 

                                             

rate to jump to different stationary levels at different time periods. The conditional 

intensity function 𝜆(𝑡|𝐻𝑡) with non-stationary background rate as a step function can 

be expressed as: 

(7) ( )

:

( ) ( ) . i

i

t t
step

i t t

t t A e


  
− −



= + 

Here, when modeling the variation in crash rates for different days of the 

week (see fig 1(b)), the background rate is expressed as: 

µ𝑠𝑡𝑒𝑝(𝑡) = µ𝑖 for i = 1 to 7, representing the 7 days of the week. 

Similarly, when modeling the rush-hour vs non rush hour traffic: 

µ𝑠𝑡𝑒𝑝(𝑡) = µ𝑖 for i = 1 to 3, representing morning rush-hour, non rush-hour and 

evening rush-hour. 

Alternatively, to account for weekly and daily traffic periodicity, a sinusoidal 

function is used to represent the non-stationary background rate. The conditional 

intensity function 𝜆(𝑡|𝐻𝑡) can then be expressed as: 

( )

:

( ) ( ) . i

i

t t

i t t

t t A e


  
− −



= +  (8) 

Here, the best fit function for the weekly trend can be expressed as: 

sin( ) ( ) { sin( ) }ot t P Q t R S  = =    + + (9) 

Similarly, when modeling the rush-hour vs non rush-hour, daily variation in 

the background function is expressed as: 

cos( ) ( ) { cos( ) }o h h h ht t P Q t R S  = =    + + (10) 

Epidemiological Models for Transportation Applications: Secondary Crashes        

11 



 

                                                      

 
 

   

       

    

 

 

      

    

 

 

  

     

  

   

  

    

    

    

     

      

     

      

Here, P, Q, R, S and Ph, Qh, Rh, Sh are the parameters for background rate that 

fit the weekly and daily crash trend respectively. 

The R code for the ETAS model obtained from Jalilian [9] was adapted to identify the 

secondary crash events in the present work. The code was developed to analyze an earthquake 

catalog using the stochastic declustering approach. We modified the code for a temporal-only 

self-exciting point process for the current application. The input data contains the date and time 

of the crash events. We also utilized a separate Matlab code for post-processing to classify 

potential secondary crashes from the dataset based on queue time and corresponding 

probability values. 

3. RESULTS 

The proposed approach is demonstrated on a dataset consisting of all crashes 

on Interstate-Highway-4 (I4) in Florida, USA for three years (2015 to 2017) [20]. The 

interstate highway I-4 is located entirely within the state of Florida, spanning 132.3 

miles [24]. In the west, the I-4 begins in Tampa and ends in the east in Daytona Beach. 

The model is investigated in six different cities on I-4: Tampa, Plant City, Kissimmee, 

Orlando, Sanford, and Daytona Beach. Tampa and Orlando are major cities and were 

chosen because their corresponding data contains more than 500 crash events. The 

other cities modeled here have at least 200 crash events each. 

Spatial and temporal thresholds from a primary incident are often used to 

analyze secondary crashes. Recent studies by multiple investigators [25-27] indicate 

that the spatial threshold is about two miles. Therefore, we analyze the data within a 
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threshold of two miles of the highway for the central parts of the above mentioned 

cities. Initially, the model is implemented with a constant background rate. It is then 

used to examine the periodic variation of weekly and daily trends by employing non-

stationary background rates using sinusoidal and piecewise functions. Finally, the 

Akaike Information Criterion (AIC) [28] is used to identify the best-fit models. 

Table 1 shows the optimized parameters for the constant background rate 

model, based on the maximum likelihood estimate. Here, A is the measure of excitation 

generated from the previous events and, 𝛼 represents the rate of decay in the triggering 

function in equation (3). Based on the functional form of the triggering function (g), 

the reciprocal of 𝛼 gives the average time-window over which secondary crash can 

occur following a primary crash. For example, from Table 1, in case of Tampa 𝛼-1 = 

0.0956 days = 137.7 minutes. This implies that if a crash occurs within 137.7 minutes 

and a two mile distance from the primary crash location, the crash is related to the 

primary crash and can be classified as secondary crash. The queue time evaluated from 

the model is used to classify the crash dataset into the primary and secondary crashes. 

The classification is conducted based on the probability values obtained using equation 

(6). The number of secondary crashes shown in Table 1 is calculated using a post-

processing code. The post-processing code finds the time difference between 

successive events, and if the event with corresponding time difference is lesser than the 

queue time and corresponding threshold probability, the event is considered a 

secondary crash. The average queue time of secondary crash events for all the cities 
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studied here is 119.3 minutes for the stationary background rate. Figure. 2 shows the 

primary and the secondary crash locations for a two mile stretch for Tampa, Orlando, 

and Daytona Beach. 

Table 1 

Estimated parameter values, number of secondary crashes and average time of secondary 

event represented for various cities on I-4 for constant background rate. 

City Total mu A Alpha Secondary Secondary event 

crashes (μ) (α) crashes avg. time (min) 

Tampa 613 0.495 0.114 10.459 64 (10.44%) 137.7 

Plant city 322 0.259 0.115 22.375 27 (8.38%) 64.3 

Kissimmee 207 0.178 0.052 15.323 9 (4.34%) 93.9 

Orlando 583 0.392 0.262 12.465 114 (19.55%) 115.5 

Sanford 248 0.205 0.090 8.676 19 (7.66%) 166.0 

Daytona Beach 242 0.190 0.138 10.401 25 (10.33%) 138.4 

Average 119.3 
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Figure 2 Primary and secondary crashes classified form the model for Tampa, 

Orlando and Daytona Beach along the I-4 highway. Secondary crashes are 

shown in red. 

The point process model with a non-stationary background rate using a 

piecewise function is examined next. Here, the background rate is set to vary at 

different stationary levels on different days in a week as described earlier. Figure. 1(b) 

shows that the number of crashes on Friday is 136% of that on Sunday. Similarly, a 

non-stationary background point process model using a sinusoidal function shown in 

equations 8 and 9 is simulated to capture this periodic variation. Table 2 shows the 

estimated parameters for the cities considered for the piecewise background rate and 

sinusoidal background rate variations, respectively. MLE based optimization is again 
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used to estimate the parameters. The queue time reported in the Table 2 is a weighted 

average of the values for the seven days of the week. Once the average queue time is 

calculated for each city, the number of secondary crashes is evaluated using the post-

processing described earlier. 

Table 2 

Estimated parameter values, number of secondary crashes and average time of secondary 

event represented for various cities on I-4 for piecewise and sinusoidal background rate for 

the different days of the week. 

Secondary 

Total mu Alpha secondary 

City A event avg. 

crashes (μ) (α) crashes 

time (min) 

Tampa 613 0.491 0.121 9.511 60 (9.78%) 127.9 

Plant city 322 0.262 0.105 26.378 23 (7.14%) 46.1 

e
ce

w
is

Kissimmee 207 0.179 0.050 16.025 8 (3.86%) 75.8 

P
ie

Orlando 583 0.405 0.238 15.411 95 78.9 

(16.29%) 

Sanford 248 0.206 0.089 8.715 18 (7.25%) 139.6 

Daytona Beach 242 0.190 0.138 10.412 23 (9.50%) 116.8 

Average 97.5 

S
i Tampa 613 0.588 0.089 14.706 50 (8.15%) 82.7 
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Plant city 322 0.305 0.101 27.664 23 (7.14%) 43.9 

Kissimmee 207 0.208 0.046 16.466 7 (3.38%) 73.8 

Orlando 583 0.476 0.225 17.073 88 71.2 

(15.09%) 

Sanford 248 0.241 0.075 10.951 16 (6.45%) 112.8 

Daytona Beach 242 0.220 0.134 10.933 22 (9.09%) 110.4 

Average 82.4 
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Figure 3 Queue time for Orlando region during different time of the day. 
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Similar piecewise and sinusoidal functions for background rate variation are 

used to examine the periodic variation in daily crash trends for rush-hour and other 

periods as reported in Figure 1(a). These are described in equations 8 and 10. Table 3 

shows the corresponding number of secondary crashes and average queue times. The 

queue time varies for each time period and the average queue time shown in Table 3 is 

a weighted average value for rush hour and other time-periods. 

Figure. 3 shows the variation of queue time for different time-periods for the 

Orlando region. Here the queue time is higher for the morning rush hour period and the 

evening rush hour periods. The higher traffic rates during rush hour [29] lead to an 

increase in the number of crashes at these times as shown in Figure 1(a). This in turn 

leads to higher queue times during rush hour. The underlying data for parametrizing 

equations (8) and (9) is based on Figure 1(a), therefore, the queue time follows the same 

trend for both sinusoidal and piecewise background rate variations. The results for the 

data corresponding to other cities are similar to Figure 3. 
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Table 3 

Number of secondary crashes and average time of secondary event for piecewise and sinusoidal 

background rates, considering rush-hour and non-rush hour variations. 

Piecewise background rate Sinusoidal background rate 

City Secondary Secondary event Secondary Secondary event 

crashes avg. time (min) crashes avg. time (min) 

Tampa 53 (8.64%) 96.1 51 (8.31%) 88.2 

Plant city 22 (6.83%) 36.6 22 (6.83%) 37.5 

Kissimmee 7 (3.38%) 66.7 6 (2.89%) 57.9 

Orlando 87 (14.92%) 67.0 81 (13.89%) 60.1 

Sanford 15 (6.04%) 109.6 15 (6.04%) 95.1 

Daytona Beach 21 (8.67%) 92.6 21 (8.67%) 86.4 

Average 78.1 70.8 

Akaike Information Criterion (AIC) [28] is used to find the goodness-of-fit for 

the proposed models. The AIC estimates the relative amount of data loss when a 

statistical model is fit to a given dataset. Given a set of candidate models, the model 

with a relatively lower AIC value is considered to be the best fit. The AIC is given by: 

𝐴𝐼𝐶 = 2𝑘 − 2ln(𝐿) (11) 
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Where k is the number of model parameters and, L represents the maximum 

value of the likelihood function for the model. While comparing the models with a 

different number of parameters, a penalty of 2k is added to reject any overfitting by the 

model. The AIC values for each model, with stationary and non-stationary background 

rates for weekly and daily traffic trends for each city, are shown in Table 4. The AIC 

values for stationary background rate are higher compared to non-stationary 

background rate. This suggests that the stationary background rate model has a 

relatively higher prediction error compared to other models. Further, the sinusoidal 

background rate models outperformed the piecewise function. Similarly, the sinusoidal 

model exhibits lowest AIC for the hourly variation as well. 
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Table 4 

Comparison of models using AIC values. 

AIC values for AIC values for weekly AIC values for daily 

stationary trend trend 

background rate 

Cities µ µ𝒔𝒕𝒆𝒑(𝒕) µ𝒔𝒊𝒏(𝒕) µ𝒔𝒕𝒆𝒑(𝒕) µ𝒄𝒐𝒔(𝒕) 

Tampa 2037.24 2010.92 1894.67 2043.00 2001.81 

Plant city 1570.23 1417.07 1381.89 1446.74 1424.88 

Kissimmee 1185.62 1131.92 1099.97 1147.41 1125.74 

Orlando 1944.56 1710.30 1638.90 1768.66 1720.58 

Sanford 1289.25 1257.19 1218.55 1278.02 1253.69 

Daytona 1198.58 1192.69 1168.87 1178.41 1163.56 

Beach 

4. DISCUSSION 

Several studies listed in Table 5 model secondary crashes using different approaches. 

The key parameters in these studies are the temporal and spatial boundaries of primary 

incidents that define secondary crashes. The studies based on the static method [25, 27, 30-31] 

model fixed and predetermined spatial and temporal thresholds for secondary crash 
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identification. However, these studies often do not yield a uniform threshold for secondary 

crashes since the traffic conditions, geometric characteristics, and incident attributes vary for 

each crash. Various dynamic methods [32] using varying spatio-temporal thresholds were 

proposed in recent studies to improve the identification of secondary crashes. In the context of 

the current research, the stationary background rate approach in equation 3 can be compared 

to the static methods. In contrast, the model with a non-stationary background rate for 

piecewise and sinusoidal functions is similar to the dynamic approaches. 

The queue time calculated from the three models is compared in Table 6. The average 

queue time of 119.3 minutes is obtained for stationary background rate. The AIC values are 

higher for the model with a stationary background rate than the other two models as it fails to 

capture the periodic variation of the crash trend. Average queue time of 97.5 minutes is 

obtained for the non-stationary background rate model using the piecewise function. For 

sinusoidal function a queue time of 82.5 minutes is obtained. The AIC values are the least for 

sinusoidal function compared to the other two models. These queue time values are comparable 

to the literature in Table 5. 

The secondary crash percentage from the models with stationary and non-stationary 

background rates are shown in Table 6. In general, the percentage of secondary crashes as well 

as queue time obtained from the stationary background rate model are higher than those 

obtained with models with non-stationary background rates. Recent studies show a similar 

percentage of secondary crashes with 8.8% in Moore et al. [25]; 7.5% in Chung [33]; 6-7% in 

Kalair et al. [34]; 8.42% in Yang et al. [35]; 5.22 % in Zhan et al. [27]; 5.53 % in Kopitch et 
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al. [31]; 3.23% in Zhan et al. [36] for different urban locations. The results from the current 

model are comparable to the literature. The point process model provides an alternate reliable 

modeling approach for classifying secondary crashes and devising policies and procedures to 

reduce the resulting loss of life and property damage. 

Table 5 

Literature review on identifying secondary crashes 

Authors Method Spatio-temporal threshold 

Raub [30], Karlaftis et al [37]. Static 1-mile and 15 minutes 

Moore et al [25]. Static 2-mile and 2 hours; same for opposite 

direction 

Hirunyanitiwattana et al [26]. Static 2-mile and 1 hour 

Zhan et al [27]. Static 2-mile and 15 minutes 

Chang et al. [38] Static 2-mile, 2 hours and 0.5-mile, 0.5 hour 

(opposite direction) 

Sun et al. [32] Dynamic Incident progression curve 

Zhang et al. [39] Dynamic Queue length estimations 

Zhan et al. [36] Dynamic Cumulative arrival and departure plots 

Chou et al. [40] Dynamic Simulation-based methods 

Yang et al. [41], Xu et al. [42], Dynamic Spatio-temporal impact area methods based 

Kitali et al. [16], Chung et al. on speed contour plot 

[33] 
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Imprialou et al. [43] Dynamic Automatic tracking of moving jams 

Park et al. [44] Dynamic Vehicle probe data 

Sarker et al. [45], Mishra et al. Dynamic Shockwave principles 

[46], Junhua et al. [47], Wang et 

al. [48] 

Table 6 

Comparison of average time of secondary crash event for each city on I-4. 

Average queue time (minutes) and % secondary crashes 

City Constant Piecewise Sinusoidal background 

background rate background rate rate 

Tampa 137.7 (10.44%) 127.9 (9.78%) 82.7 (8.15%) 

Plant city 64.3 (8.38%) 46.1 (7.14%) 43.9 (7.14%) 

Kissimmee 93.9 (4.34%) 75.8 (3.86%) 73.8 (3.38%) 

Orlando 115.5 (19.55%) 78.9 (16.29%) 71.2 (15.09%) 

Sanford 166.0 (7.66%) 139.6 (7.25%) 112.8 (6.45%) 

Daytona Beach 138.4 (10.33%) 116.8 (9.50%) 110.4 (9.09%) 

Average 119.3 97.5 82.4 

The percentage of the secondary crash for the Orlando region is higher compared to 

other cities in the study. There are likely a number of factors which contribute to this 
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phenomenon including, construction and maintenance, unique lane geometry of the Orlando 

section, high traffic volumes, and urban setting. However, one factor that is unique to Orlando 

and likely plays a significant role in the secondary crashes is the prevalence of unfamiliar 

drivers. Orlando is one of the top tourist destinations in the USA, receiving approximately 75 

million domestic and international visitors annually. Unfamiliar drivers tend to be more 

distracted, as they seek route guidance via roadside signs or GPS system. Such conditions 

likely contribute to secondary crashes. 

Traffic incident management (TIM) programs are designed to detect, respond to, and 

clear traffic incident scenes. These multi-disciplinary efforts aim to safely and quickly treat 

victims, clear vehicle wreckage, and restore the flow of traffic. Effective TIM programs reduce 

incident duration and affect, while improving safety for crash victims, the motoring public, 

and emergency responders. The adoption of a planned and coordinated approach to protect the 

incident scene, modify the flow of traffic, and separate crash victims and responders from the 

motorist may have a profound impact on the severity and frequency of secondary crashes [49]. 

The results of this research including probability distribution of secondary crashes and the 

secondary event average time could inform TIM toward a targeted clearance time. Decreasing 

the time needed to clear a primary incident reduces the exposure of the scene to secondary 

crashes. This research found that secondary crashes, on average occurred between 37 and 96 

minutes after the primary incident, when accounting for the natural fluctuations in traffic and 

incident patterns. This may suggest that reducing the primary incident impact duration below 

this threshold, could significantly reduce the likelihood of secondary crashes. While the model 
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is parameterized to a specific highway in this work, the approach is generic and can be used 

for the any crash and traffic datasets. 

5. CONCLUSION 

A novel approach to identify secondary crashes is investigated using temporal 

self-exciting point process model. The proposed approach is used to model crash events 

on I-4 highway in Florida, USA, spanning a period of three years. The model has the 

ability to analyze and classify crash events data using either a stationary background 

rate, a sinusoidal or a piecewise non-stationary background rates, for periodic variation 

in crash events data. After fitting the model to the data and optimizing the model 

parameters, queue time values resulting from primary crashes are determined and used 

to classify the crash events into primary and secondary events. The stationary 

background rate model failed to appropriately fit the data, since it is based on the 

assumption that the crash events are invariant to any external factors. However, the 

data from I-4 exhibits periodic variation with weekly and daily trends based on rush 

hours period inherent to traffic on highways. Using non-stationary background rate 

models, we were able to accurately fit the crash data and obtain queue time curves with 

peak on Fridays and trough on Sundays similar to the crash data. Using the sinusoidal 

non-stationary background rate model, we found that 3.38% to 15.09% of the traffic 

incidents from the crash data on I-4 are secondary. The proposed models in this work 

can be used to create policies and countermeasures that aim to reduce the risk of 

secondary crashes. 
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