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Executive Summary 

Emergencies can happen at anytime and anywhere in our daily lives. “Emergency” is a 

broad term that summarizes several different situations, which are generally serious, 

unexpected, and require immediate actions. This study focused on aviation emergency 

evacuation situations, which have the characteristics of high level of time pressure and 

uncertainty. Therefore, a real-time decision-making assistance system is needed and will 

be largely helpful when an emergency exists at the airport or on an aircraft when an 

evacuation occurs. The system and model built and described in this paper are based on 

the Asynchronous Advantage Actor Critic (A3C) algorithm, which is one of the newest 

algorithms under Deep Reinforcement Learning Algorithms. It provides quicker and 

more efficient evacuation routes for the agents in the environment compared to traditional 

evacuation simulation models, thus saving time for passengers. This study adopted an 

A3C algorithm as the tool to simulate the evacuation process under different situations 

(multiple agents and different environmental conditions) and results were compared with 

Deep Q-Networks (DQN) to demonstrate the efficiency and effectiveness of the A3C 

algorithm use in evacuation models. Results indicated that under static environments, 

A3C demonstrated superior adaptability and quicker response times. It performed 43.86% 

faster than DQN in terms of the average time taken for agent evacuation and converged 

quicker at around 100 episodes compared to 250 episodes for DQN algorithm. In 

scenarios with moving threats, the A3C algorithm also outperformed DQN in terms of 

dynamic pathfinding efficiency and maintaining agent safety. Furthermore, with an 
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increasing number of agents, A3C showed better scalability and robustness in managing 

complex interactions and providing quick evacuations for multiple agents. These 

outcomes highlight A3C's advantage over traditional models, especially in terms of 

adaptability, efficiency, and scalability under varying and challenging conditions. The 

report concludes with a discussion of the practical implications and benefits of these 

models. It emphasizes their potential in enhancing real-world evacuation planning and 

safety protocols. The practical implications and benefits of these models are provided at 

the end of the report. 
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 Abstract 

Emergencies can happen at anytime and anywhere in our daily lives. “Emergency” is a 

broad term that summarizes several different situations, which are generally serious, 

unexpected, and require immediate actions. This study focused on aviation emergency 

evacuation situations, which have the characteristic of high level of time pressure and 

uncertainty. Therefore, a real-time decision-making assistance system is needed and will 

be largely helpful when an emergency exists at the airport or on an aircraft when 

evacuation occurs. The system and model built in this paper are based on the 

Asynchronous Advantage Actor Critic (A3C) algorithm, which is one of the newest 

algorithms under Deep Reinforcement Learning Algorithms. It provides quicker and 

more efficient evacuation routes for the agents in the environment compared to traditional 

evacuation simulation models, thus saving time for passengers. This study adopted an 

A3C algorithm as the tool to simulate the evacuation process under different situations 

(e.g., multiple agents and different environmental conditions) and results were compared 

with Deep Q-Networks (DQN) to demonstrate the efficiency and effectiveness of A3C 

algorithm use in evacuation models. Results indicated that under static environments, 

A3C demonstrated superior adaptability and quicker response times. It performed 43.86% 

faster than DQN in terms of the average time taken for agent evacuation and converged 

quicker at around 100 episodes compared to 250 episodes for DQN algorithm. In 

scenarios with moving threats, the A3C algorithm also outperformed DQN in terms of 

dynamic pathfinding efficiency and maintaining agent safety. Furthermore, with an 

increasing number of agents, A3C showed better scalability and robustness in managing 
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complex interactions and providing quick evacuations for multiple agents. These 

outcomes highlight A3C's advantage over traditional models, especially in terms of 

adaptability, efficiency, and scalability under varying and challenging conditions. The 

report concludes with a discussion of the practical implications and benefits of these 

models. It emphasizes their potential for enhancing real-world evacuation planning and 

safety protocols. The practical implications and benefits of these models are provided at 

the end of the report. 
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 Section 1: Introduction 

Every second counts in the face of an emergency. Emergencies often threaten 

property, the environment, and, most importantly, human lives. Among various types of 

emergency situations, those occurring in transportation sectors, such as aviation, require 

immediate attention and care. Given that the population involved in different modes of 

transportation is always high and in constant motion, any emergency during normal 

operations could significantly disrupt schedules and endanger thousands of lives. To deal 

with emergency situations, researchers have conducted several studies that are predictive 

and proactive. In the aviation industry, the emergency is a sensitive and concentrated area 

of interest where strict rules and regulations have been set and the most effective and 

efficient reaction to the emergencies that occur under high mental workload and time 

pressures is required. Emergency situations demand swift, precise, and efficient 

responses to minimize damage and prevent future occurrences. Being both reactive and 

proactive is essential for effectively managing emergencies that occur in aircraft and 

airports. Therefore, a decision-making system that could provide the most time-saving 

route for emergency evacuation at the airport is necessary.  

Safety and compliance are of paramount importance in the aviation industry 

today. According to the Federal Aviation Administration (FAA), more than 45,000 flights 

are handled daily, with approximately 2.9 million passengers flying in and out of the 

United States (FAA, 2022). Given such a large number of daily flights, passenger safety 

becomes a top priority for airport designers and airlines. According to airline on-time 

statistics and delay causes (Figure 1) reported by the Bureau of Transportation Statistics 
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(BTS) in 2021, the five broad categories most affecting normal airline and airport 

operations are: (1) Air carrier delays, (2) Extreme weather conditions, (3) The National 

Aviation System (NAS), (4) Late-arriving aircraft, and (5) Security concerns. Each of 

these factors could cause significant delays and elevate risk during operations.  

Figure 1. Flight Delays by Cause National 

This paper is structured as follows: Section 2 provides a literature review of 

recent research on simulating and dealing with emergency situations in various 

environments. This section also analyzes two types of emergencies in the aviation 

industry, examining the effects of different emergencies on aircraft and airport 

environments, as well as regulations and evacuation plans. It also reviews previous 

studies related to airport evacuation and analyzes the use and implementation of 

algorithms to optimize evacuation routing and planning. The algorithms and models 

discussed include, but are not limited to, the Asynchronous Advantage Actor Critic 

(A3C) algorithm, Multi-Agent Deep Reinforcement Learning (MADRL), velocity 

obstacle (OV), and social force (SF). Section 3 describes methods and the model 
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establishment and system architecture, including theoretical functions and simulation 

environments. Section 4 presents the final evacuation simulation results and an analysis 

of the outcomes. Finally, Section 5 provides a comprehensive conclusion of the entire 

model and discusses future improvements and directions.  

Section 2: Literature Review 

Emergency Situations 

“Emergency” is a broad term that summarizes several different unexpected 

situations. Emergencies could cause severe consequences and should be mitigated 

immediately when they occur. According to the Oxford English Dictionary, an 

emergency is “a serious, unexpected, and often dangerous situation requiring immediate 

action,” which illustrates the following characteristics of an emergency: unpredictable, 

dangerous, and needs immediate attention and action (Alexander, 2013). An emergency 

could disrupt the operations easily because of its unpredictable characteristics, which will 

lead to severe consequences if the emergency is not managed properly and in a timely 

manner. Therefore, mitigations from both proactive and reactive aspects are important to 

protect lives and properties from emergency situations. Depending on different types of 

emergency situations, the time required for information processing and reaction could be 

different; thus, the mitigation and evacuation plan could also vary.  

Emergency situation examples include floods, hurricanes, fire hazards, traffic 

accidents, blizzards, hail, etc. Each different situation has a different scale and severity, 
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which will have various consequences and damage. While most emergency situations 

could be mitigated to some extent by following the correct steps of normal operations, 

reactive actions, including evacuation plans and real-time decision-making systems, still 

play an important role in correctly responding to emergency situations. For example, 

when a fire suddenly occurs at the cinema or there is an emergency landing at an airport, 

it could be largely mitigated or solved by the emergency response and evacuation plans, 

which will not cause a huge interruption to normal operations. However, there are 

emergency situations that cannot be spotted and reacted to immediately, such as natural 

disasters and terrorist attacks. When massive emergency situations happen, the normal 

emergency response plan will not be fast enough to respond to protect lives and 

properties (Alexander, 2013). Therefore, the real-time decision-making system and 

human reaction to emergency situations are essential and should be immediately involved 

for a better consequence. 

Risk assessment is always a good way to help better understand an emergency 

situation and, thus, to design and react efficiently and safely. To evaluate the safety of 

evacuation when a large steel gym collapses due to a localized fire, Zhang et al. (2016) 

proposed a steel-temperature rise model which considered both the effect of smoke 

thermal radiation and convention and the effect of flame thermal radiation on steel 

components. Since the collapse of a steel structure gymnasium has a more significant 

impact on evacuation than the smoke hazard, a method was developed to quantitatively 

assess the casualties caused by the collapsed structure. Moreover, a quantitative risk 

assessment of evacuation safety was performed comparing the Available Safe Egress 

Time (ASET) and Required Safe Egress Time (RSET). The result of the experiment 
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showed that the modified temperature rise model of steel components accurately 

predicted the temperature rise in the fire. Furthermore, by taking into account the distance 

from the farthest point to the safety exit, different moving speeds, the width of the 

evacuation exit, and the density of people, the experiments demonstrated that the model 

could predict the movement time during evacuation in steel-structured gymnasiums 

accurately. 

Aviation Emergency 

Emergency situations in aviation can be classified into two categories: aircraft 

emergency and airport emergency. Aircraft emergencies can be complex, dangerous, and 

may be caused by several different reasons. Aircraft emergencies, including instrument 

failure, autopilot failure, landing gear failure, engine failure, etc., can happen at any time 

while in flight. To deal with these unwanted emergency situations, the Federal Aviation 

Administration (FAA) and manufacturers have published emergency response plans and 

checklists for each different model of aircraft in order to help pilots deal with 

emergencies and make better decisions under time pressure. For example, when there is 

an engine failure during a flight, pilots have three choices of emergency landing to deal 

with the situation: precautionary landings, forced landings, and ditching. Precautionary 

landing is the safest and most likely survival landing, which has only a 0.06% fatality 

rate. However, when it comes to forced landing and ditching, which can cause big 

pressure on pilots and do not allow enough time and reaction, the fatality rate increases to 

as high as 10% and 20% (Rossier, n.d.). The fatality rate indicated the danger of engine 
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failure but also demonstrated the importance of precaution and proactive plans and 

solutions.  

Compared with aircraft emergency, airport emergency situations are less frequent 

but pose an equal or even greater threat to lives and properties. According to the 

Advisory Circular (AC) 150/5200-31C published by the U.S. Department of 

Transportation (DOT) and FAA, an airport emergency is “any occasion or instance, 

natural or man-made, that warrants action to save lives and protects property and public 

health” (DOT&FAA, 2009). To be more specific, the FAA and DOT classified different 

types of airport emergencies, including but not limited to (Villamizar, 2022): 

• airport and aircraft malfunctions that impede safe flight, 

• suspicious packages, 

• bomb threats, 

• sabotage of aviation-related equipment, 

• structural fires and non-structural fires,  

• natural disasters, etc. 

To deal with these different types and severities of airport emergency situations, 

the FAA and DOT require each certificate holder of an airport to have the ability to 

introduce and maintain an airport emergency plan (AEP). The AEP should cover 

responses to each different situation and maximize the ability to protect property and 

public health (DOT&FAA, 2004). A qualified AEP typically follows four phases (i.e., 

mitigation, preparedness, response, and recovery), which are suggested by the Federal 

Emergency Management Agency (FEMA) for emergency management.  
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 There are various reasons and causes that could lead to emergency situations for 

both aircrafts and airports, while most of the emergency situations need immediate 

evacuation and other types of measures to mitigate the consequences. For example, the 

right engine of a Boeing 767 aircraft from American Airlines caught on fire during the 

takeoff phase in 2016. Although Chicago O'Hare International Airport had an emergency 

evacuation due to this emergency situation, 20 people still received different levels of 

injuries while 161 passengers were all evacuated through the slides (Hradecky, 2016). 

Another evacuation that happened at Denver International Airport was caused by a left 

engine fire on a Bombardier CRJ-700 from United Airlines in 2017. In the evacuation, 59 

passengers plus four crewmembers evacuated and none of them were injured according to 

the report (Hradecky, 2017). In 2017 at Daytona Beach International Airport, an Airbus 

A320 performed an emergency landing when the front windshield was cracked because 

of hail. The 132 passengers, including crewmembers, were safely evacuated because of 

the efficient evacuation plan and design (Hradecky, 2017). In all of these three 

emergency cases, the evacuation plan and rule played important role. In 2017, the FAA 

established the rule for evacuation plans and routes on aircraft that limits the time 

required by all the passengers evacuating from the aircraft to 90 seconds, which is called 

the “90 s evacuation rule.” Because of the rule, the evacuation of different types and 

designs of aircraft could be limited in a time frame and performed efficiently. Thus, for 

emergency situations, the aviation industry needs more measures to help mitigate the 

impact of emergency situations. Accordingly, the evacuation plan and emergency 

response system can also be divided into aircraft evacuation and airport evacuation, 

which will be explained more detailly in the following sections.  
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Airport Evacuation Simulation 

To achieve the goal of safety and efficiency, evacuation plans and routes play 

important roles in airlines and airports. In FAR part 25, the FAA established the “90 s 

evacuation rule,” which, as stated previously, limits the time required by all the 

passengers evacuating from the aircraft to 90 seconds. However, unlike aircraft 

evacuation, airport evacuation does not have a rule or regulation that sets the time frame 

for evacuation. Therefore, people need to pay more attention while designing the 

evacuation plan since every different airport has different characteristics and 

construction. In the Code of Federal Regulations (CFR) title 14 part 139.325, the FAA 

requires each certified airport to develop and maintain an airport emergency plan (AEP), 

which is designed “to minimize the possibility and extent of personal injury and property 

damage on the airport in an emergency” (CFR, 2022). In this case, time is not a variable 

nor a criterion to evaluate the effectiveness of an evacuation anymore. One of the most 

significant difficulties in airport evacuation and AEP is that it is impossible to apply a 

generic plan to all of the different airports designs and layouts. To design and evaluate an 

effective airport evacuation, researchers will need to explore and build the model based 

on different airports because of the different layouts and locations, which is a time-

consuming and complex task. 

Chen et al. (2019) conducted an agent-based simulation for airport evacuation to 

determine the optimal number of exit doors and the best evacuation path for passengers 

when an emergency happens. In the study, they mainly focused on how to improve the 

efficiency of evacuation under emergency situations at the airport and used a local airport 
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as the base for their model. The results also evaluated whether the evacuation strategies 

used right now are adequate considering the continuously growing number of passengers. 

The agent-based simulation is achieved by using a simulation software named AnyLogic, 

which is able to simulate the routes and evacuation process for airports while changing 

the variables, including exit doors, evacuating path, etc. (Chen et al., 2019). 

The result from the number of changing variables simulations illustrated the 

relationship between the passenger volume and the total evacuation time. Naturally, 

passengers will need more evacuation time when the passenger volume is higher. 

Additionally, the number and location of exit doors are also two essential factors. In the 

simulation, passengers tend to evacuate through doors that are closer and easier to access, 

which could potentially increase the time of evacuation because of congestion. Thus, 

Chen et al. (2019) recommend that each airport administration design its own exit plan, 

including the path, the number, and the location of emergency exits in the airport. The 

simulation and method can be used to estimate the evacuation time for different airports 

based on construction and design. Although the simulation is helpful for optimizing 

evacuation plans and routes for airports, it still needs to be improved by considering 

agents or people that are moving at a relatively low speed, for example, the elderly and 

children. Moreover, the location of an emergency or threat in the airport can also be 

considered a variable that could make evacuation more efficient by changing the routes 

or making multiple plans. 

The most important thing in airport operations is safety. Since full-scale 

evacuation practice is too expensive and time-consuming, computer model techniques are 

widely used for pedestrian evacuation. Cheng et al. (2014) developed an agent-based 
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model in order to simulate the passenger evacuation process. In the model, the airport, 

which should be viewed as a complex system, was divided into landside and airside, 

while pedestrians were divided into passengers and wavers. Three emergency exits were 

available on both sides of the airport. Three security levels of passengers were defined 

based on their location and were directed to evacuate through different exits.  

As shown in Figure 2, passenger activities were sorted into processing activities 

that were mandatory for passengers aboard the airplane and discretionary activities, 

which were defined as any other passenger activities conducted during the non-

processing time. Processing activities include check-in, security, customs, and boarding, 

whereas discretionary activities include walking, shopping, eating, etc. Two levels of 

behavioral responses were considered in the model. The global behavioral level outlined 

the general evacuation process: respond to signal, move toward exits, wait before exits, 

and complete evacuation. Moreover, the local behavioral level considered different 

response times of passengers due to different ages and travel purposes and considered 

that group travel passengers would adjust their speed to match the slowest group member. 

Furthermore, it was assumed that there was no panic behavior during the evacuation.  

Figure 2. The Departure Process of Passengers in Airport (Cheng et al. 2014) 
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The simulation experiment results demonstrated the evacuation time of passengers with 

group dynamics is longer than that of passengers who travel on their own since group 

passengers would spend more time making decisions, moving, and waiting for other 

members. The experiment also verified that the agent-based model could be utilized to 

analyze pedestrian group dynamics in a complex environment. However, the model 

developed in this study is not designed for extreme situations, and airport staff was not 

taken into consideration during experiments. 

Due to different physical or mental conditions, people with disabilities would be 

most affected when emergencies happen, and the built environment would also affect 

them far more than the general population. However, previous studies have not 

adequately considered persons with disabilities when constructing evacuation models or 

designing simulated environments. Thus, since it is critical to incorporate disability 

considerations into emergency evacuation plans, preparations, and other activities, 

Christensen and Sasaki (2008) developed an agent-based simulation that can classify 

built environments based on environmental characteristics and simulate complex 

populations based on individual variable criteria. Their BUMMPEE (Bottom-up 

Modeling of Mass Pedestrian flows – implication for the Effective Egress) model allows 

simulated behaviors to more appropriately represent the diversity and prevalence of 

individuals with disabilities and their interaction with the built environment, thereby 

determining the effectiveness of the built environment in adapting to the needs of persons 

with disabilities during evacuation. 

To develop their model, Christensen and Sasaki (2008) assessed the impact of 

current and proposed Americans with Disabilities Act Accessibility Guidelines 
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(ADAAG) on the built environment and identified five groups of disabilities and six 

criteria that differ in relation to the particular forms of disability, and four environmental 

characteristics that had a significant impact on people with disabilities. The five disability 

groups included physical, mental, go-outside-home, sensory, and self-care disability. 

Moreover, the six criteria were specified as individual speed, individual size, individual 

ability to negotiate the terrain, individual perception, individual psychological profile, 

and individual assistance. The BUMMPEE model addressed these criteria by including 

seven different populations: motorized wheelchair users, non-motorized wheelchair users, 

the visually impaired, the hearing impaired, the stamina impaired, individuals without 

disabilities familiar with the environment, and individuals without a physical or sensory 

disability but less familiar with the environment. Each population was separately defined 

by the difference in speed, size, and ability to negotiate the terrain. Furthermore, the four 

environmental characteristics were classified as exit character, route character, obstacle 

character, and planned systems.  

After setting the basic criteria, population, and environmental characteristics, the 

BUMMPEE model was written in C++ with the use of a common graphical interface 

structure. To validate the reasonableness of the model, a physical evacuation of the same 

environment and population was conducted at the Utah State University Human Services 

Research Center (HSRC) on September 14, 2005, to compare model results with actual 

results. However, due to differences in the data available for the physical and simulated 

models, only two measurements (maximum evacuation time and the number of evacuees 

evacuating at each exit) were used for comparison. The results validated the consistency 

and similarity of the BUMMPEE model with real-world scenarios by showing that the 
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average total evacuation time of the evacuation simulations was only 33 seconds less than 

the physical evacuation. 

Application of Machine Learning in Evacuation 

Machine learning, a study “of computer algorithms that can improve 

automatically through experience and data” (Mitchell, 1997), has been continuously 

developed and implemented by researchers in a number of different areas, including 

medical, image recognition, computer vision, product recommendation, etc. In the 

aviation industry, machine learning was also used as a powerful tool that helps provide 

coherent and safe trips for more than thousands of flights daily.  

Compared to private vehicle traveling, public transportation systems like the 

metro, bus, and airport have more complexity and the possibility of emergencies. 

Because of their unpredictable variables, including passengers who are changing all the 

time, the probability and consequences of emergency situations in the public 

transportation system are normally severe and need immediate mitigation or evacuation. 

To accomplish this task, Ma et al. (2022) achieved passenger flow forecasts using the 

machine learning algorithm under emergency situations in the metro. They pointed out 

that because of passenger congestion during the peak period of transportation, it is 

necessary to develop a passenger flow forecast system by applying the Long Short-Term 

Memory (LTSM) model, which is one of the applications of machine learning algorithms.  

In the research, Ma et al. (2022) utilized transfer learning and the LTSM network 

to predict the passenger flow of the metro transportation system in both normal and 

emergency situations. They pointed out that although Gao et al. (2019) have analyzed the 
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passenger flow change through a mathematical modeling method, it is still difficult for 

this method to accomplish the task with the huge amount of passenger flow under 

emergency situations. Thus, compared to traditional methods, the LTSM network and 

transfer learning together are more suitable for measuring a large amount of passenger 

flow under emergency situations. 

Figure 3. The Transfer Learning Procedure Between Normal and Emergency 

Passenger Flow (Ma et al., 2022) 

In the research, Ma et al. (2022) first divided the model into two parts: the normal 

passenger flow model and the emergency passenger flow model. They completed the first 

part, which is the normal passenger flow model first, then a transfer learning model was 

applied to convert the normal passenger flow model into an emergency passenger flow 

model in order to predict and simulate the passenger flow under emergency situations 

(Figure 3). The result shows that machine learning algorithms are extremely helpful in 

reflecting the capacity of public transportation like airports and metro. Research 
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demonstrated that machine learning algorithms have the ability to catch the sensitive 

change in passenger flow and deal with either big or small passenger flow under 

emergency situations. 

Gota et al. (2020) leveraged machine learning algorithms and addressed airport 

emergency situations from another aspect. In their research, implementation of machine 

learning was applied to the threat objects detection system, which represents the 

“proactive” level of an airport emergency plan. Gota et al. (2020) used the convolutional 

neural network and specialized libraries. The algorithm and network are able to recognize 

threats using X-ray images. The result indicates the usage of machine learning in threat 

object detection, like bomb threats in an airport, which detects the threat early and 

shortens the evacuation time, thus improving the evacuation process and protecting lives 

and properties. 

Another study conducted by Zarraonandia et al. (2009) presents a virtual 

environment that could simulate different emergency situations in the airport and find 

each different emergency cause and consequence. The virtual environment was built 

using DimensioneX. The results show that the virtual environment can be used as an 

evaluation and learning tool in order to help supervisors and researchers design a better 

airport emergency plan. Therefore, we can choose to test the emergency situation 

decision-making system and the multi-agent collaborative evacuation model in the virtual 

environment and continuously improve the process and result of the system. 

In emergency search and rescue, the rational use of robots can reduce the loss of 

human resources and property, reduce possible injuries to search and rescue personnel 

during the process, and even rescue survivors faster. With a fully automated system as the 
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ultimate goal, Vaidyanath et al. (2020) developed a system consisting of a swarm of 

unmanned aerial vehicles (UAVs) and a virtual “spokesperson” in the experimental 

virtual reality simulation environment to determine when the system should rely on 

UAVs and speakers, and when a human operator should be prompted to intervene.  

In the experiment, the virtual reality environment depicted a wildfire ravaging a 

small town, while the system (UAVs and spokesperson) and the human operator needed 

to cooperate to find and guide survivors to a safe escape from the fire. The UAVs capable 

of issuing pre-recorded warning messages would need to contact and convince a civilian 

group to leave their homes before the fire reaches the scene and then guide the group to a 

safe evacuation. Virtual humans (spokesperson) can assist with missions and negotiate 

with groups through a UAV, while human operators can be interrupted for help when the 

UAV feels unable to convince the group in time. The spokesperson was implemented in 

the Wizard of Oz (Woz) setting to collect real-world interaction data between human 

operators and the system. Vaidyanath et al. (2020) utilized reinforcement learning to 

automatically learn a strategy to be followed by the UAV after finding survivors, 

convincing them to leave, and guiding them out.  

Vaidyanath et al. (2020) modeled the Reinforcement Learning (RL) problem as a 

Markov Decision Process (MDP) and experimented with both the Monte Carlo 

simulations and the Temporal Difference Learning methods. The study focused on the 

on-policy Monte Carlo algorithm since it worked the best. Three possible levels of 

communication with the survivor groups were set: UAV warning, spokesperson 

persuasion, and human operator convincement. There were three types of survivor groups 

that would behave differently when dealing with the UAVs: the stubborn couple, the old 
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couple, and the babysitter with a child. Moreover, there were seven policy actions: warn, 

allow-spokesperson-to-negotiate, interrupt-operator, query-for-guidance-info, UAV-

guide, Vehicle-guide, and wait. Furthermore, five state variables were set: operator-

business-level (0-3), group-status (0-5), fire-approach-time (0-4), preferred-guidance-

type (1-3), and negotiate-status (0-2). As a result, a total of 1,440 states and 10,080 state-

action pairs were developed. 

By setting the fire approach time to values 2, 3, and 4, three different policies that 

worked for all survivor groups were learned and each policy was trained for 1 million 

episodes and tested for 10,000 episodes. The final result demonstrated the success rate of 

saving survivors exceeded 95% when the fire-approach-time variable was set to 4, the 

average success rate of saving survivors was 90% when the variable was set to 3, and 

when the variable was set to 2, the rescue survivors had an average success rate of 74%. 

There are many machine learning applications in the evacuation process, one of 

the most popular methods is the Reinforcement Learning model, due to its strength in 

dealing with uncertain environments. In the next section, a specific machine learning 

algorithm, Reinforcement Learning is reviewed. 

Reinforcement Learning (RL) 

As one of the unique and useful machine training methods, Reinforcement 

Learning (RL) has the characteristic that does not require a supervisor or complete model 

(Sutton & Andrew, 2018). By utilizing its unique features, the learning agent in a 

reinforcement learning model is able to make its own decision while trying to achieve the 

goal and maximizing the total reward. The agents normally can train themselves by 

20 



 
 
 
 

 

performing countless choices and attempts, which improves its result from simple right or 

wrong to a set of complex steps and tactics in order to reach the best result.  

When emergencies occur, the most important and difficult task is to evacuate the 

crowd safely and efficiently. During the evacuation process, incorrect evacuation 

methods and routes will undoubtedly cause more casualties, but the uncertainty of crowd 

movement can also make the evacuation mission more difficult to succeed. However, the 

behavior logic and trajectory of the crowd can be predicted, and there is no doubt that this 

crowd behavior simulation could be very helpful for evacuation in times of emergency. 

While traditional methods of crowd evacuation simulation lack consideration of 

variable scenarios and dynamic movements, in order to improve the visual realism of 

crowd simulation, Yao et al. (2019) developed a reinforcement learning-based data-

driven crowd evacuation (RL-DCE) framework. Firstly, the DCE model was established. 

To quantify the cohesiveness of crowds, the model extracted dynamic characteristics, 

including position and velocity, from video. A cohesiveness-based K-means (C-K-

means) algorithm was built and thus grouped the crowd to predict their trajectories. 

Second, a hierarchical path planning mechanism was developed. Two layers were 

proposed in the mechanism. By utilizing reinforcement learning algorithms, the top-layer 

would train the control policy using the obtained trajectories to handle the dynamic 

environment, while the bottom-layer was responsible for collision avoidance by using the 

reciprocal velocity obstacles (RVO) model.  

After comparing path computation based on group and the individual, Yao et al. 

(2019) validated the efficiency of the group-based path calculation. Moreover, by 

comparing the trajectory obtained in the simulation and the trajectory in the video, the 

21 



 
 
 
 

 

 

 

result showed that the path planning method is able to make the simulated trajectory very 

close to the trajectory in the video. Furthermore, Yao et al. (2019) also analyzed path 

control in terms of weight parameter adjustment and found that the path planning method 

is able to handle path changes in a dynamic environment. Besides, after 180 iterations, 

the reinforcement learning-based path calculation curve tends to stabilize, which 

demonstrates that the method is convergent. Also, by comparing with other methods, Yao 

et al. (2019) validated that the RL-DCE improved the visual realism of crowd evacuation 

simulation while adapting to the dynamic environment. 

How to evacuate people more efficiently and safely in a crisis situation is always 

the most important thing. Zhang and Guo (2014) developed a novel distributed multi-

robot system to guide the evacuation of people in emergency situations. By incorporating 

a cooperative exit-seeking algorithm into the system, the robots can work together by 

estimating gradients online and tracking gradient descent while moving in sequence. To 

better simulate human behaviors, two human panic behavior models were considered in 

the system, and both static and dynamic routing evacuation experiments were simulated 

in a mall-like environment. The result demonstrated that in the case of 130 evacuees, the 

usage of a multi-robot system could reduce evacuation time by approximately 50%, while 

more than 40% of time reduction was proved in the case of 250 evacuees. 

As the immersed tube tunnel becomes more and more popular, fire evacuation has 

become more and more critical due to the deep depth and the closed and narrow design of 

the tunnels. Since the previous study failed to consider personal behavior in actual 

situations during the evacuation, Tian and Jiang (2018) established the largest section 

immersed tube tunnel experimental base in the world and conducted a large-scale fire 
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evacuation test to the high-temperature hazard range of fire and calculate the realistic 

evacuation speed. Based on all their experiment, Tian and Jiang (2018) successfully built 

an evacuation model and calculated the minimum safe escape time by establishing a 

mathematical algorithm.  

All experiments were carried out in the Hong Kong-Zhuhai-Macau experimental 

base while considering the limited evacuation area and multiple evacuation directions of 

the tunnel. In the experiment, only the effect of high temperature was considered and the 

scale of the fire was 50MW. The results stated that the temperature would be above 60 °C 

(unbearable temperature for breathing) in the range of about 25m of fire upstream and 

downstream from the height of 1.5m. By utilizing reinforcement learning, the authors 

transform the tunnel fire evacuation problem into an O-D (origin-destination) path 

selection problem. The experiment result demonstrated that as the iteration number 

increases, the number of people on each path to an exit tends to a definite value so that 

the final result converges. For the future experiment, people in the non-hot area 

influenced by smoke as well as people traveling in groups would also be taken into 

account. 

Another study conducted by Kim and Pineau (2015) illustrated the possibility and 

usage of RL in adaptive path planning in human environments. Their framework of 

adaptive path planning consists of three modules, which are the feature extraction 

module, the inverse reinforcement learning module (IRL), and the path planning module 

(Kim & Pineau, 2015). By combining three modules together, the system is able to 

navigate and choose the most efficient path in a changing environment, full of moving 

targets (Figure 4). The research is quite useful when applied to an airport emergency 
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environment, where people are panicking and trying to find the closest and safest path to 

evacuate. 

Figure 4. Illustration of Robot Adaptive Path Planning Using Inverse 

Reinforcement Learning (Kim & Pineau, 2015) 

The experiments were tested in three different scenarios, including an 

uncontrolled dynamic environment (Kim & Pineau, 2015). According to their result, the 

module which utilized inverse reinforcement learning used “a set of demonstration 

trajectories generated by an expert to learn the expert’s behavior” when it was faced with 

several features that have different states. In the uncontrolled dynamic experiment, the 

framework illustrated its ability to adapt to the changing environment, which suits our 

goal of making the system work and optimizing the evacuation in a real-world airport.  

Asynchronous Advantage Actor Critic (A3C) 

Asynchronous Advantage Actor Critic (A3C) is one of the most efficient 

algorithms of RL. The agents learn from repeated action, value, and feedback from the 

policy through interaction with the environment and optimize and converge to the best 
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result. The A3C algorithm could utilize the advantage of asynchronous training and 

improve the agent's training speed. In the environment, multiple agents can explore and 

take actions independently while maintaining collaboration with each other. In other 

words, A3C distinguishes itself from traditional reinforcement learning algorithms by 

employing a parallelized training process, where multiple agents independently explore 

different copies of the environment simultaneously (Figure 5). This approach allows for 

diverse experience sampling, which reduces correlation in the training data and improves 

learning efficiency. Unlike many RL algorithms that update the global network 

synchronously, which can lead to bottlenecks and inefficient learning, A3C updates the 

global parameters asynchronously as soon as each agent completes its batch of 

experiences. This enables faster learning and adaptation, as the global network benefits 

from the cumulative knowledge of all agents without waiting for any single agent's 

episode to conclude. 
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Figure 5. The A3C Algorithm Framework (Lee & Yoo, 2023) 

Research done by Ding et al. (2021) illustrated the advantages of using A3C in 

optimizing the routing path for data transmission evaluation. In their research, Ding et al. 

(2021) implemented the delay tolerant networks (DTN) and applied Deep Q-learning 

Network (DQN) and A3C under different scenarios. The results show that A3C can get 

close to the top value with fewer episodes compared to the DQN algorithm, which 

indicates the efficiency and improvements of the A3C algorithm in node and link 

equilibrium. By using A3C, the evacuation model in a different situation could reach its 

optimal value and converge in a relatively short amount of time.  
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When emergencies occur, panic usually happens among people and everyone's 

behaviors and thoughts are usually different, which will lead to different evacuation 

intentions and actions. Therefore, studying human psychology and behavior is very 

important for the design and research of evacuation models. Since previous studies have 

not or rarely paid attention to psychology and behavior, Vorst (2010) suggested that 

psychological parameters and human behavior should be added to the emergency 

evacuation model, so as to make the evacuation model more comprehensive and realistic.  

Vorst (2010) used John Leach’s Dynamic Disaster Model which divided a 

disaster into three phases including the pre-impact phase, impact phase, and post-impact 

phase. Moreover, a total of five stages were developed: the threat stage, warning stage in 

the pre-impact phase, recoil stage, rescue stage, and post-traumatic stage in the post-

impact phase. The model also suggested that specific human behaviors that are 

considered psychological responses to disasters are consistent throughout each stage and 

phase and do not vary greatly from disaster to disaster. 

Furthermore, Vorst (2010) also examined the evacuation rate before and after a 

hurricane to explain the importance of taking human factors into account when 

developing evacuation models. It was found that before the disaster, 30% of all residents 

refuse to evacuate, and when the specific emergency situations changed to be more 

urgent (during the disaster), 5% of all residents refuse to evacuate. These responses 

caused 25% longer evacuation times. Additionally, families’ or parties’ intention to stay 

together would affect evacuation efficiency as well. Moreover, it was also mentioned that 

women would feel more stressed than men, which would lead to a 20% longer evacuation 

time. Based on the research, Vorst (2010) proposed various parameters that can be used 
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in evacuation models and concluded that considering psychological parameters and 

human factors would make evacuation models more comprehensive and realistic and 

make predictions more accurate. 

Social-Force (SF) Models 

Social-Force (SF) models for pedestrian dynamics were first introduced by Dirk 

Helbing and Péter Molnár in 1995. In their model, the motion and decisions of 

pedestrians can be described by social forces, an analogy from kinetic molecular motions, 

thus providing valuable information for planning and designing public area construction 

and evacuation (Helbing & Molnar, 1995). These 'social forces' are conceptualized as a 

set of invisible factors that influence pedestrian behavior, similar to the forces acting 

between molecules that govern their movement and interaction. Specifically, social forces 

in the context of pedestrian dynamics include the desire to reach a destination, the need to 

maintain a personal space bubble to avoid collisions with others, the tendency to align 

with the flow of surrounding people, and the impact of environmental elements such as 

barriers. Each of these forces plays a crucial role in shaping how individuals navigate 

through and interact with their surroundings, making the SF model a powerful tool for 

understanding and predicting pedestrian movement patterns in complex environments. 

Helbing and Molnar explained that the “forces” in the model were not simply exerted by 

the environment in which pedestrians were located; instead, they were the measure of 

internal motivations for each individual to make a decision or perform a specific motion.  
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Generally speaking, human behavior is hard to predict and irregular (i.e., 

“chaotic”), especially when there are multiple individuals who exist in the same 

environment. Their motivations and motions are unpredictable and sometimes even 

interact with each other to make the situation even more complex. However, when 

sticking to a relatively simple stochastic situation, the motion of individuals and 

behavioral models will be developed if “one restricts oneself to the description of 

behavioral probabilities that can be found in a huge population of individuals” (Helbing 

& Molnar, 1995), which refers to the gas-kinetic pedestrian model (Helbing, 1993). 

Figure 6. Illustration of the pedestrian model 
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Figure 6 shows how the system and model simulate the action and decision-

making process of pedestrians. In the illustration, pedestrians are divided into two 

different groups, with each color representing a motion direction. One pedestrian from 

the left has crossed the narrow door, which makes the other pedestrians in the same group 

tend to move forward with him/her in the same direction. This behavior can be explained 

by social forces: the pedestrian who crossed influences the others through a social force 

that encourages group members to follow, enhancing their tendency to move in the same 

direction. Consequently, pedestrians in the opposite direction then have to wait, a 

behavior driven by social forces that represent the psychological and physical need to 

avoid collisions and maintain personal space. This waiting behavior is a manifestation of 

repulsive social forces exerted by the moving group, which temporarily increases the 

social pressure on the opposing pedestrians to pause their movement and yield space. The 

diameter of each circle represents the speed of each individual, indicating how social 

forces not only influence direction and decision-making but also the speed at which 

pedestrians feel comfortable moving in response to the surrounding social dynamics.  
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 Figure 7. Observation of pedestrian density and lanes formation 

Figure 7 shows how the social force model operates and the factors that affect 

individuals’ decisions. In the figure, the flow of pedestrians can be observed with a 

uniform moving direction when the density of individuals is above a certain point. The 

computational results were calculated and based on “N=4 (or 5) lanes on a walkway that 

is 10 m wide and 50 m long” (Helbing & Molnar, 1995). The pedestrians still move in 

two opposite directions while there is no command or rule forcing them.  

Zhang et al. implemented the SF model with deep reinforcement learning (DRL) 

algorithm and applied them to emergency evacuation in a room with obstacles (Zhang et 

al., 2021). They found that although the SF model is fairly successful in simulating 

emergency evacuation situations, the optimal evacuation result is still questionable in 

complex environments that have obstacles. Therefore, Zhang et al. (2021) developed the 
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DRL algorithm with the social-force model, which helped train the agents to find the 

evacuation exits fast and efficiently.  

In the research, Zhang et al. (2021) first create a model of an empty room where 

there is no obstacle in the environment. Thus, the self-driven force model pointed to the 

nearest exit directly to test its correctness. According to the model, the median time that it 

took to evacuate for the two methods used in the research is “not significantly different” 

(Zhang et al., 2021). Then the model was changed to one obstacle and one exit in the 

room, where their method and the SF model provided similar results. In a follow-up 

study, they also investigate evacuation for a room that has multiple exits. The results 

indicate the ability of the agents that are trained to successfully evacuate from the nearest 

exit, which illustrated the efficiency of training in the SF model through a network that 

was shared among different agents while every agent kept its own motivation and action. 

In summary, the Q-learning approach and SF model they used was able to deal with 

emergency situations in a room that has multiple exits with multiple obstacles. The SF 

model is able to solve the problem of finding the most efficient and nearest exit for fast 

and safe evacuation under emergency situations in a complex environment.   

According to Helbing and Molnar’s research, it is possible to view and predict 

individuals’ behavior using a set of equations of motion. When a pedestrian faces 

situations that happened or is normally confronted with, his/her action would be based on 

his/her experience and automatically respond with the best reaction in his/her opinion. 

Thus, the systematic temporal “changes dwa/dt of the preferred velocity wa(t) of 

pedestrian a are described by a velocity quantity Fa(t) that can be interpreted as a social 

force” (Helbing & Molnar, 1995). Although the force represents the effect from other 
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individuals and the borders, the force is not actually applied to the individual’s body. 

Instead, the social force represents the motivation of the pedestrian to take action. In 

summary, a pedestrian would take action when he/she is subjected to external forces 

(from other individuals or borders) in a SF model. Moreover, this theory has been 

mathematically founded and adapted into research (Helbing, 1993). 

Multi-Agent Reinforcement Learning (MARL) 

According to the research done by Papoudakis et al. in 2020, a multi-agent 

reinforcement learning (MARL) system can be viewed as a “society of agents,” where 

agents can interact with each other and cooperate to achieve a common goal (Papoudakis 

et al., 2020). Compared to traditional single-agent methods that are used, a multi-agent 

system has the advantage that could shorten the time of simulation and calculation while 

staying accurate. Because of the multiple numbers of agents, a complex task or 

exploration can be solved by jointly interacting agents with coordinated behaviors in a 

short period of time (Gosavi, 2004). However, developing a multi-agent system does not 

mean simply adding multiple numbers of agents into the same environment and making 

them work. Since the complexity of the entire system will increase because of the 

increased interaction and action of agents, the interaction between agents is more 

important than the number of agents. 

In a cooperative environment of multiple agents, the policies and instructions for 

each different agent will become difficult to perform or optimize sometimes because of 

the curse of dimensionality in the environment. On the other hand, the delay between the 

correlated actions and rewards is unignorable and significant in the cooperative multi-
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agent environment. Because of the determined character of maximizing the gain for each 

different agent, there will be the agent who could not receive their deserved reward and 

been affected by other agents’ favorable actions. Thus, to address the problems of the 

curse of dimensionality and the unbalanced rewards between multiple agents, the agents 

should be trained from a macro aspect, which helps the agents have a bigger view of the 

whole environment and system, thus improving the results and solutions for the multi-

agent model. 

Researchers have combined the advantage of reinforcement learning and multi-

agent system and applied MARL in various fields. Martinez-Gil et al. (2011) utilized the 

MARL technique in learning the behaviors and navigational patterns of humans to 

simulate virtual pedestrians’ movements. They managed to reveal the basic movements 

and real characteristics of pedestrians, which indicates the validity of the MARL 

algorithm and model in simulating multiple agents’ movements. In the paper, they 

prepared two RL algorithms based on Vector Quantization (VQ) for Q-Learning (VQQL) 

algorithm (Martinez-Gil et al., 2011). The results showed that both approaches are able to 

obtain adequate vector quantization for each different agent in the environment. The 

MARL technique can be used to solve a large amount of agents' movement problems like 

evacuation under emergency situations. With the help of reinforcement learning, the 

system is able to scale movement path and speed control, which is extremely helpful 

when emergency situations occur. At the end of the report, Martinez-Gil et al. (2011) also 

suggested that the two reinforcement learning algorithms used in the research could be 

integrated for the future work.  
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Emergencies that occur in small, enclosed spaces with high population densities, 

such as classrooms and movie theaters, are often the most likely to cause casualties. 

Thus, evacuation designs and plans are becoming increasingly important. Since it is hard 

for static evacuation methods to demonstrate the difference in safety for all alternative 

designs, and putting people in real emergencies is time-consuming, dangerous, and 

expensive, Liu et al. (2016) developed an agent-based simulation model via NetLogo to 

investigate the correlation between evacuation efficiency and classroom layout. This 

model, utilizing the principles of multi-agent systems (MAS), simulates the complex 

interactions between individual agents representing people during an evacuation. By 

establishing a set of behavioral rules for these agents based on real-world experience, the 

agent-based modeling (ABM) techniques employed in the study can successfully reflect 

the dynamic characteristics of human evacuation behaviors. Each agent operates 

autonomously yet interacts with other agents and the environment in a manner that 

captures the collective behavior of crowds in emergency situations, showcasing the 

power of MAS in understanding and optimizing evacuation processes. 

There are four major parts in the simulated environment of Netlogo: turtles 

(agents), patches (grids that constitute a 2-D world), links (the social and physical 

connection between agents), and observers (supervisors). Liu et al. used two major types 

of general classroom layouts, while two different types of evacuation scenarios (a self-

organized scene and a premeditated scene) were designed and thus led to four categories. 

The self-organized agents only are set as selfish and independent and only consider 

running out quickly, so the population density and distance to the nearest exit would most 

influence their decision-making process. In contrast, the premeditated agents who have 
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conducted fire drills would follow the instructions and evacuate while avoiding collision 

with other agents. Speed limits were also introduced to get more realistic results. Agents 

were randomly divided into three groups that had a speed of 0.6 m/s, 1m/s, and 1.2 m/s. 

The results showed that a classroom layout with two exits would shorten evacuation time 

while the agents under premeditated behavior rules could evacuate both quick and safe 

(Liu et al., 2016). 

Summary 

The review of existing literature on emergency situations, aviation emergencies, 

evacuation processes, and technological approaches such as machine learning, RL 

including the A3C algorithm, SF models, and MARL algorithms highlights the 

significant progress made in this field. However, there is still a noticeable gap in the 

practical application and effectiveness of advanced computational models, specifically on 

utilizing the A3C algorithm in real-world evacuation scenarios. Most studies have 

concentrated on theoretical or simulated environments with limited exploration into 

complex and real-life emergency situations. These situations normally involve dynamic 

threats and a high density of individuals. This study aims to bridge this gap by not only 

applying the A3C algorithm in realistic evacuation simulations but also by comparing its 

efficacy with established models like DQN. The findings from this research enhance our 

understanding of the practicality and adaptability of RL algorithms in emergency 

evacuations, which is crucial in aviation emergencies where timely and efficient 

evacuation can significantly impact safety and survival. By advancing the knowledge in 

this field, this study contributes to the development of more effective evacuation 
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strategies, potentially saving lives and optimizing emergency responses in high-risk 

situations. 

Section 3: Methodology 

The model and environment for this study were built using two types of 

algorithms: A3C and DQN. This section provides a detailed description and explanation 

of these two algorithms, including the models and code structure and how they were 

applied to the model and environment. 

A3C Algorithm 

The model's primary goal was to achieve efficient and optimal decision-making 

for evacuation during emergency situations using the A3C algorithm. As stated in the 

literature review section, A3C is a powerful reinforcement learning algorithm that 

addresses the challenges associated with traditional reinforcement learning methods. One 

of the main benefits of A3C is its ability to use multiple actors to explore different parts 

of the environment in parallel simultaneously. This speeds up the training and learning 

process and reduces the redundancies between agents and training environments (see 

Figure 8). 
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Figure 8. Asynchronous Advantage Actor-Critic Network 

The A3C algorithm-based model consists of two components that achieve the 

Actor-Critic structure: the actor and the critic. The actor represents the policy function for 

the agents in the environment, defining the probability of each step for each agent based 

on the current state of the environment. One essential aspect of A3C is instructing and 

guiding the agents' actions for the best outcome. On the other hand, the critic plays an 

important role in estimating the value function of the current policy for the agents. It acts 

like a critic who evaluates the quality of the actor's actions. The critic will compute the 

advantage score and update the policy for the actor to obtain a better policy and rewards 

in the following episodes. By combining the advantages and functions of both actor and 

critic, A3C can utilize both the benefits of policy-based and value-based approaches to 

achieve the best learning efficiency. The policy-based approach directly optimizes the 

policy as it directly enhances the policy function that maps states to actions, while the 

value-based approach is more stable and has lower variance in their estimates compared 

to policy-based methods (Sutton and Barto, 2018). Therefore, A3C combines the 

strengths of both methods and makes it more effective in a wide range of RL problems, 

including those with complex action spaces. 
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The following pseudocode (Figure 9) illustrates the logic for the A3C algorithm 

and how each actor-learner thread works (Mnih, 2016). The θ represents the policy in this 

algorithm, which was strictly followed by the agent for taking actions and making 

decisions. While θv models the value function V, which evaluates the effectiveness of the 

action that agents took. Both θ and θv are implemented using convolutional neural 

networks (CNNs) with shared parameters, except for the output layer. In order to output  

Algorithm 1 Parallelized Actor-Critic with Advantage Estimates 

1: // Define global shared vectors 𝜃 (policy) and 𝜃𝑣 (value), and a global counter 𝑇 = 0 
2: // Define thread-specific vectors 𝜃 ′ (policy) and 𝜃 ′ 𝑣 (value) 
3: Initialize thread counter: 𝑡 ← 1 
4: repeat 
5: Reset gradients: 𝑑𝜃 ← 0, 𝑑𝜃𝑣 ← 0 
6: Align thread-specific parameters: 𝜃 ′← 𝜃, 𝜃 ′ 𝑣 ← 𝜃𝑣 

7: Set thread iteration start: 𝑡start ← 𝑡 
8: Obtain current state: 𝑠𝑡 
9: repeat 
10: Execute action 𝑎𝑡 as per policy 𝜋(𝑎𝑡 |𝑠𝑡 ; 𝜃 ′) 
11: Receive reward 𝑟𝑡 and observe new state 𝑠𝑡+1 

12: Increment thread counter: 𝑡 ← 𝑡 + 1 
13: Increment global counter: 𝑇 ← 𝑇 + 1 
14: until 𝑠𝑡  is terminal or 𝑡 − 𝑡 start = 𝑡 max 

15: Compute 𝑅 for state 𝑠𝑡 : 𝑅 = 0 if 𝑠𝑡 is terminal, or 𝑅 = 𝑉 (𝑠𝑡, 𝜃 ′ 𝑣) otherwise // Bootstrapping for 
non-terminal states 
16: for each step 𝑖 from 𝑡 − 1 to 𝑡start do 
17: Update 𝑅 : 𝑅 ← 𝑟𝑖 + 𝛾 𝑅 
18: Calculate gradient for 𝜃 ′ : 𝑑𝜃 ← 𝑑𝜃 + ∇𝜃 ′ log 𝜋(𝑎𝑖|𝑠𝑖 ; 𝜃 ′)(𝑅 − 𝑉 (𝑠𝑖; 𝜃 ′ 𝑣)) 
19: Calculate gradient for 𝜃 ′ 𝑣 : 𝑑𝜃𝑣 ← 𝑑𝜃𝑣 + 𝜕 (𝑅 − 𝑉 (𝑠𝑖 ; 𝜃 ′ 𝑣))2 /𝜕 𝜃 ′ 𝑣 

20: end for 
21: Apply asynchronous updates to 𝜃 and 𝜃𝑣 using 𝑑𝜃 and 𝑑𝜃𝑣 

22: until 𝑇 > 𝑇max 

Figure 9. Pseudocode for each actor-learner thread in A3C algorithm 

the probabilities of actions for the agents to take, a softmax function was given to θ. For 

θv, a linear layer was used for outputting a scalar value for evaluation of the actions. 
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Starting from initialization, the Global shared counter T was initialized to 0, while 

the thread step counter was initialized to 1. The parameter vectors in this algorithm are 

also set as two types: global shared parameter vectors θ and θv, and the thread-specific 

parameter vectors θ' and θ'v. At each step, the algorithm will update the thread-specific 

parameter vectors θ' and θ'v to match the global parameter vectors θ and θv. The system 

then interacts with the environment, where the action at is chosen based on the current 

state St and the policy π (at∣St ; θ'). It observes the reward rt and the new state St+1. 

This step will repeat until a terminal state is reached or a maximum number of steps, 

which is t – tstart, are taken. When the algorithm encounters a terminal state, indicating the 

end of an episode, the expected future return R is set to 0, as there are no further rewards 

to be obtained beyond this point. If the final state is non-terminal, the return will be 

generated using the value function R = V (st, θ'v). The return R and accumulated 

gradients with respect to θ' and θ'v are calculated for each step from t-1 to tstart. The return 

is then calculated by summing up the rewards from the current state to the end of the 

episode, with each reward discounted by a factor of γ raised to the power of the number 

of time steps away from the current state: 𝑅௧ = 𝑟௧ + 𝛾𝑟௧ାଵ + 𝛾ଶ𝑟௧ାଶ + ⋯ + 𝛾்ି௧𝑟  

Where rt is the reward at time t and γ is the discount factor. The γ was set 

between 0 and 1 and determines the importance of future rewards, where a value of 0 

means the agent will only consider the current reward and a value close to 1 indicates the 

agents will value the future rewards more strongly. Thus, in this project, the γ was set to 

0.99, which is a relatively large gamma value in reinforcement learning applications, as 
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the future rewards are considered almost as important as the immediate rewards in the 

case of successful evacuations in the airport. The discount factor closest to 1 will 

encourage the agents to consider long-term rewards and make them tend to choose 

actions based on better long-term outcomes. Also, for a stochastic dynamic environment 

like the airport, a higher discount factor could help stabilizing the learning process and 

reduce the variance in the updates. Although the training and learning process could be 

slow because of the large value of discount factor, 0.99 is still a good gamma value after 

the hyperparameter tunning process. 

The A3C algorithm is an algorithm that uses the Policy Gradient framework, 

which normally uses the Temporal Differences-error (TD-error) method as its critic and 

evaluates how good the actor is. The following formula represents the empirical estimate 

of the policy gradient for RL problems: 

ே ் ்1 ∇𝑅 ≈ 𝑁ቌγ௧ᇲି௧𝑟 ᇲ − 𝑏ቍ∇lo g π ሺ𝑎௧|𝑠௧ሻ௧ ୀଵ ௧ୀଵ ௧ᇲୀ௧ 
As a policy gradient method, A3C improves the stability of the method and 

convergence properties of policy gradient methods. The advantage function, used in A3C, 

measures the difference between the expected return of taking an action in a particular 

state and the expected return of behaving according to the current policy in that state. The 

advantage function can be written as follows: 𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 (𝐴௧) =  𝑅௧ − 𝑉(𝑠௧) 
In this simplified formula, the Rt represents the cumulative discounted rewards 

from time to time and the 𝑉(𝑠௧) represents the critic part, which mainly provides 

estimation of the state value for the state st. The advantage essentially tells how much 
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better or worse the action is by comparing it to the expectation of the critic part. To be 

more specific, the advantage formula can be detailed as follows: 𝐴(𝑠௧ , 𝑎௧) = 𝑟௧ + γ𝑉 (𝑠௧ାଵ) − 𝑉  (𝑠௧) 
Here, the 𝑟௧ is the reward at time t. As mentioned before, estimated by the critic, V(st) is 

the value of state st and 𝛾 is the discount factor. By using this advantage formula, the 

algorithm is capable of calculating the difference between cumulative discounted rewards 

and the expected rewards given by critic, and thus can evaluate how much better the 

action truly is. 

As the advantage formula gauges the expected return disparity between the action 

and current policy, the update formula is also essential for calculating the expected 

reward gradient in respect to the policy parameters. The A3C policy optimization formula 

can be expressed as follow: ∇𝐽(θ) ≈ ∇ log π (𝑎௧|𝑠௧)𝐴(𝑠௧ , 𝑎௧) π(𝑎௧|𝑠௧) is the probability of taking action in state 𝑠௧ under policy θ. The update 

formula is essentially computing the gradient of the expected reward with respect to the 

policy parameters, scaled by the advantage. 

In practice, the A3C algorithm also introduces an entropy regularization term to 

encourage exploration during the training process. By encouraging the agents to choose 

something without a curtain decision or knowledge (exploration), the agents could 

actually learn more from the environment and the policy by interacting more. This is 

known as the exploration-exploitation trade-off (Figure 10), which is a fundamental 

dilemma in reinforcement learning.  

42 



 
 
 
 

 

 

 

 Figure 10. The Exploration-exploitation Trade-off 

After adding the consideration of the exploration-exploitation trade-off, the total 

loss for the A3C algorithm typically consists of three parts: the policy gradient loss, value 

function loss, and entropy regularization. The full objective function that A3C tries to 

optimize can be formulated as: ଶ 𝐿(θ) = − log π (𝑎௧|𝑠௧)𝐴(𝑠௧ , 𝑎௧) + λ ቀ𝑉(𝑠௧) − 𝑉(𝑠௧)ቁ − βπ(𝑎|𝑠௧) log π (𝑎|𝑠௧)  

The first term, − log π (𝑎௧|𝑠௧)𝐴(𝑠௧ , 𝑎௧), represents the policy gradient loss. This term 

encourages the probability of actions that lead to higher-than-expected returns to increase 

and the probability of actions that lead to lower-than-expected returns to decrease. Here, 𝐴(𝑠௧ , 𝑎௧) is the advantage function, which measures how much better an action is 

ଶ 
compared to the average action at state St. The second term, λ ቀ𝑉(𝑠௧) − 𝑉(𝑠௧)ቁ , is the 

value function loss, which is a mean-squared error that penalizes the agent for incorrect 

value estimates. The agent's current estimate of the state value 𝑉(𝑠௧) is compared to the 

target value 𝑉(𝑠௧), which is computed using the bootstrapped returns. This value function 

loss ensures that the value function is a good predictor of future rewards, which is critical 
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for calculating accurate advantage estimates. Last but not least, the entropy regularization −β ∑ π(𝑎|𝑠௧) log π (𝑎|𝑠௧) encourages exploratory behavior by dissuading the policy 

from becoming overly deterministic, thus maintaining a healthy balance between 

exploration and exploitation. As the training process minimizes these three terms of the 

loss function, it concurrently refines the parameters of both the policy and the value 

function. This refinement guides the agent towards a more effective strategy over 

successive iterations. 

DQN Algorithm 

To compare efficiency in terms of time and learning curves by measuring the 

average reward, the Q-learning algorithm was employed as a foundational component of 

the Deep Q-Network (DQN) to simulate evacuation procedures in an airport 

environment. DQN served primarily as a standard baseline for this research because it is 

commonly used in many types of simulations, including evacuation scenarios, within 

reinforcement learning studies. As one of the earliest deep learning-based RL algorithms, 

DQN successfully demonstrated that neural networks could approximate Q-values for 

high-dimensional state spaces. This capability makes it well-suited for the complex 

simulations of this research and establishes a solid performance benchmark for 

comparison with the A3C algorithm. 

Q-learning is an RL algorithm that seeks to learn the value of an action in a 

particular state, aiming to maximize the total reward. The pseudocode provided (Figure 

11) offers a clear and basic illustration for the implementation of the Q-learning process 

(Yang, 2020). 
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Algorithm 2 Q-learning Algorithm 

1: Initialize Q(s, a) as zero; 
2: for each episode do 
3: Initialize state s 
4: for each step of the episode do 
5:     Choose action a from state s using Q-table 
6: Take action a, observe r, s ′ 
7: Q(s, a) ← Q(s, a) + α[r + γ maxa ′ Q(s ′ , a ′) − Q(s, a)] 
8: s ← s ′ 
9: end for 
10: end for 
11: until s is terminal 

Figure 11: Pseudocode of the Q-learning algorithm as the foundational component 

of DQN 

The Q-values are initialized arbitrarily, providing a starting point for the 

algorithm to begin learning. These values represent the expected utility of taking a given 

action in a given state and are updated iteratively as the agent interacts with the 

environment. This initialization provides a baseline from which the algorithm can begin 

the learning process. Then the learning occurs over a series of episodes. Each episode 

begins with the initialization of the states (s), representing the starting conditions of the 

evacuation simulation, such as the initial position of agents within the airport. Within 

each episode, actions are chosen using an ε-greedy policy, which involves selecting the 

action with the highest Q-value (exploitation) with probability 1−ϵ or a random action 

(exploration) with probability ϵ: 𝑊𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀: 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎  = 𝑎𝑟𝑔𝑚𝑎𝑥_𝑎 𝑄(𝑠, 𝑎) 𝑊𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀: 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 

After executing an action, the Q-value is updated based on the Bellman equation, which 

incorporates the immediate reward and the discounted maximum future reward:  𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ሾ 𝑟  + 𝛾 max(𝑜𝑣𝑒𝑟 𝑎ᇱ) 𝑄(𝑠ᇱ , 𝑎ᇱ)– 𝑄(𝑠, 𝑎)ሿ 
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In the DQN algorithm, 𝑄(𝑠, 𝑎) represents the current estimated value of taking 

action a in state s, encapsulating the expected utility of this decision. The learning rate, 

denoted as α, plays a critical role in balancing new incoming information with existing 

knowledge, thereby controlling the rate at which the algorithm adapts. The immediate 

reward received from taking action a in state s is represented by r, serving as a direct 

feedback mechanism for the action's effectiveness. The discount factor, γ, quantifies the 

importance of future rewards, enabling the algorithm to prioritize short-term gains against 

long-term benefits. Upon taking action a, the agent transitions to a new state 𝑠ᇱ, with max(𝑜𝑣𝑒𝑟 𝑎ᇱ) 𝑄(𝑠ᇱ , 𝑎ᇱ) indicating the best possible future reward attainable from this 

new state, guiding strategic decisions towards the most beneficial outcomes. This update 

process is repeated for each step within an episode, continuing until a terminal state is 

reached. This marks the conclusion of one simulation run, with the goal of optimizing 

evacuation strategies in the face of dynamic challenges and threats. 

The DQN algorithm improves the classical Q-learning framework by 

incorporating a deep neural network to estimate the Q-value function. This is crucial for 

handling the high-dimensional state spaces found in complex environments, such as 

airports. The algorithm strategically uses replay memory to store transitions experienced 

during the simulation, which are later randomly sampled to update the neural network. 

This method diversifies the learning experience, preventing overfitting to recent 

transitions and smoothing the training process over numerous episodes. As a result, the 

DQN algorithm can incrementally refine its Q-values and gradually identify optimal 

evacuation paths. The algorithm demonstrates an ability to learn and improve evacuation 
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strategies iteratively by confronting and negotiating various challenges, such as dynamic 

threats and the coordination of multiple agents. 

The utilization of the DQN algorithm, supported by an advanced Q-learning 

framework, enables effective simulation and enhancement of airport evacuation 

procedures. The algorithm's adept handling of complex scenarios through continuous 

learning and adaptation illustrates its potential in optimizing evacuation paths, ultimately 

contributing to safer and more efficient emergency responses. In this study, DQN is not 

only a powerful tool but also a critical benchmark for evaluating the A3C algorithm. By 

comparing the performance and learning dynamics of DQN and A3C within the same 

simulation environment, we can clearly delineate the strengths and limitations of each 

approach. This comparative analysis enhances our comprehension of the applicability of 

RL algorithms to real-world challenges, such as airport evacuations. It positions DQN as 

a fundamental model against which the innovations and improvements of A3C can be 

measured, highlighting areas where A3C may offer advantages in terms of learning 

efficiency, scalability, and adaptability to complex, dynamic environments.  

Environment 

The environment utilized in this project was developed and customized solely 

using the Gym toolkit (Brockman et al., 2016). Developed by OpenAI, Gym was 

designed as a toolkit for creating and comparing various types of RL algorithms. As the 

agents operate under the policies of different algorithms within the Gym environment, 

they generate varying average rewards and levels of efficiency, culminating in unique 

learning results. The environments available through Gym span from traditional control 
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tasks and games, such as Atari, to robotic simulations. In this particular project, a unique 

Gym environment was developed from scratch, simulating a real airport environment, 

without dependence on pre-existing environments. The customized environment permits 

agents to function across any algorithm, evading limitations to a specific algorithm. The 

customized environment created by Gym is ideal for the project's objective of fitting 

agents and enabling them to find the optimal evacuation path under various algorithms in 

different airports. Gym's capabilities allow the transformation of any real-life airport into 

a virtual environment, where agents can determine the best evacuation route. In other 

words, the biggest advantage of using Gym environment is that it, combined with the 

self-learning feature of machine learning, generates the optimal route for any actual 

airport, thereby saving time and lives. 

This project's customized environment consists of several key components: 

environment space, agent, observation, reward, and episode. The environment space is 

where agents move and take actions, defined by a state space and an action space. The 

state space is the system's current state, as indicated by the agent location, which will be 

clearly defined in the code. The action space encompasses all nine potential actions an 

agent can take within the environment: the four cardinal directions (North, South, East, 

West), the four intercardinal or ordinal directions (Northeast, Southeast, Southwest, 

Northwest), and remain static. The environment's comprehensiveness and detail are 

enhanced by these two spaces. The agent is a crucial element within the environment, 

interacting by taking actions within specific states. When the agent takes action, it 

receives observations and rewards from the environment, which helps it make better 

decisions in future episodes based on its policy and learning algorithms. The environment 
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provides agents with observations and rewards, which are information about the current 

state of the system and scalar feedback based on the agent's actions. By utilizing these 

fundamental elements, agents can continue to take actions and maximize their cumulative 

reward over time. 

The customized environment was created by transforming a pre-existing airport 

map. The map was based on a real-world local airport to ensure a more accurate and 

comprehensive result for emergency evacuation (see Figure 12). Adopting the real-world 

airport map into the reinforcement learning environment offers advantages such as 

increased realism, complexity, and detail. The use of clear and concise language with a 

logical flow of information ensures that the text is comprehensible and objective. The 

realistic and complex environment of real-world airports, as opposed to the pre-made 

environment in Gym, can aid in the development and training of more robust and capable 

algorithms such as A3C and DQN. These algorithms are better equipped to handle a 

variety of different scenarios. Additionally, the environment built around the local airport 

can serve as a benchmark for various algorithms and provide a shared foundation for 

comparing their performance in the same environment.  
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Figure 12. A Local Airport Ground Floor Map 

The normal airport operating process consists of four phases: check-in, security, 

waiting area, and boarding (Figure 13). These phases typically occur at different locations 

within the airport, which may have multiple floors. This project focuses on the first floor 

of the airport, where the check-in and security phases take place. Compared to the first 

two phases, there is less probability of emergency situations occurring in the waiting and 

boarding area. This is because passengers have already passed the security check and are 

carrying baggage and items that strictly follow the rules and restrictions of the airport and 

the Transportation Security Administration (TSA). Emergencies, such as bomb threats 

and fires, tend to occur more frequently during the first two phases: check-in and security 

on the ground floor of the airport. 
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Figure 13. The Four Phases of Airport Operation 

To correctly simulate the local airport map, we define ‘self.walls’ in the 

customized environment to draw the outline as well as all of the obstacles in the airport. 

The line ‘self.walls = np.full((self.size, self.size), False)’ is used to create a 2D array (or 

matrix) with the shape defined by ‘(self.size, self.size)’. And each element of this array is 

initially set to False to simulate the existence of the wall and obstacles in the airport. 

When agents in the model take action, each of them will normally take one step in each 

direction it choses. For walking distance, the step length on average is 2.2 feet for a 

woman and 2.5 feet for a man (StepsApp, 2023). When there are emergency situations, 

passengers tend to run and move faster than normal walking, then the distance of 

traveling will become bigger. Therefore, the size value for the map was set to 50 pixels, 

which makes the environment come to 2,500 (50x50) pixels large. This causes the model 
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to have a large and reasonable environment for the agent to explore and learn by taking 

steps. With the consideration of step length, obstacles in the airport, and the compatibility 

of Gym customized environment, the complete environment was built as shown in Figure 

14. 

Figure 14. The Customized Environment 

To simulate the local airport better, seven (7) exits in total were designed and put 

into the environment at the location where the real ones are. They are marked as Exit 1 to 

Exit 7 from left to right in the environment and highlighted using green color. Because of 

the compatibility of Gym, instead of building the map with angles, the airport ground 

floor was divided into two parts, left and right, and put them together as a rectangle. This 

makes the environment exclude other affecting factors and extra rooms for entering the 

second floor. 

In this environment (see Figure 15), the ticket counters are kept to provide a 

realistic simulation of the airport, as well as the rental car counters and baggage claim. 
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With the consideration of the first two phases, check-in and security, we put the threat 

near the baggage claim area, representing a potential fire accident or bomb threat. 

Therefore, there will be four situations based on the environment settings and number of 

agents, which are: single-agent static threat situation, single-agent moving threat 

situation, multi-agent static threat situation, and multi-agent moving threat situation. Each 

of the situations was test and used as the benchmark platform for both A3C and DQN 

algorithms in the project. 

Figure 15. The Customized Environment by Adopting the Real-world Airport Map 
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Static Threat Environment 

In the static threat scenario, a single agent is tasked with finding the shortest, 

fastest, and safest route to escape from the airport under the assumption of a static threat. 

Without the obstruction of other agents (passengers), this individual is free to explore the 

environment with each step taken. The experience gained will be collected and learned 

from through this exploration-exploitation process using the algorithms. The scenario 

involves a bomb threat at the airport, which poses a danger to thousands of lives. To 

make the situation more realistic and dangerous, the threat is placed near the baggage 

claim area. The bomb threat is represented by a red dot that remains static while the 

agents explore the optimal path to escape from the airport. Figure 16 shows the complete 

environment, including the single agent and the bomb threat. 

Agen 
Bom 

Figure 16. Single Agent Static Threat Environment 
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Moving Threat Environment 

In the moving threat scenario, the limitation of one agent in the environment 

remains unchanged. However, the threat has been replaced with a more dangerous and 

realistic object: fire. Emergency situations, such as fire hazards, differ in scale and 

severity from other hazards and emergencies. As previously stated, while proper 

adherence to normal operations can mitigate most emergency situations to some extent, 

reactive measures, such as evacuation plans and real-time decision-making systems, still 

play a crucial role in effectively responding to emergencies. Therefore, in the event of a 

sudden fire at the airport, emergency response and evacuation plans can greatly mitigate 

or resolve the situation without causing significant disruption to normal operations. The 

threat in this case was simulated using a fire spreading model coded by Martin in 2023 

using MATLAB, following a specific pattern to mimic real-world scenarios (Martin, 

2023). The original model simulated a forest fire using a spreading model. It created a 

random forest on an n x n grid, with a probability p of igniting a tree that had not yet 

burned in its Moore neighborhood. This added more randomness to the model during the 

spreading process (see Figure 17). 
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Figure 17. Simulation of a Forest Fire with the Spreading Model in MATLAB 

(Martin, 2023) 

To improve the accuracy of this model as a representation of fire spreading 

patterns in airports, the probability of igniting a tree was modified to the probability of 

spreading to its closest cell and enlarging itself. This means that the fire will spread 

regardless of whether there is a 'tree' in its Moore neighborhood or not. As a result, the 

fire spread model in this project becomes more realistic and quantifiable with each step 

the agent takes and learns (Figure 18). 
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Figure 18. Single-Agent Fire Environment Changes with Episodes 

The model was run on a computer equipped with an AMD Ryzen 5600X 3D 

CPU, an NVIDIA GeForce RTX 3060 Ti GPU, and 16GB of RAM. This setup provided 

the necessary computational resources for the demands of the RL algorithms used in the 

study. Each model and simulation was conducted over 1,000 episodes, with each episode 

representing a complete run of the environment from start to finish. The finish could be a 

successful escape from the airport, a collision with the static or moving threats, or even a 

crash between other agents for a multi-agent situation. To ensure statistical significance 

and account for variability, each model was tested across at least 50 trials. Throughout 

these episodes, key data points were collected, including metrics such as cumulative 

rewards per episode, the frequency with which specific exits were taken, and the duration 

of each episode from start to finish. The cumulative rewards per episode serve as the 

basis for a comprehensive analysis of the models' performance in terms of each 

algorithm's learning process. To facilitate a direct comparison between the two models 

under investigation, identical conditions were maintained across trials, and the same sets 
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of metrics were used for evaluation. The comparison of learning curve and efficiency 

measured in seconds focused not only on the efficiency and effectiveness of the models 

in achieving the set objectives but also on their learning behavior over time and 

adaptability to the environment. 

Section 4: Results 

To evaluate and summarize the findings of the evacuation under different settings, 

the results are classified and compared across three distinct scenarios: a single-agent 

static threat environment, a single-agent moving threat environment, and a multi-agent 

environment. In each scenario, evacuation simulations were conducted using two 

different algorithms, A3C and DQN, to compare their efficiencies. This comparison 

involved measuring the time taken for each successful evacuation in seconds and 

analyzing the learning process by evaluating the cumulative rewards per episode. These 

metrics helped assess the performance of the two algorithms under identical 

environmental conditions and settings. 

Static Threat Environment 

Efficiency was measured in terms of the average time in seconds taken for the 

single agent to evacuate from the static threat environment. Figure 19 shows a distinct 

advantage of A3C over DQN in the static threat environment. In the graph, the x-axis 

represents the number of episodes and the y-axis shows the average evacuation time in 

seconds. As shown in Figure 19, A3C (in blue) consistently demonstrates a faster 

evacuation time across episodes compared to DQN (in red), showcasing its distinct 
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advantage in this aspect. Specifically, the average evacuation time for A3C is 

approximately 22.32 seconds and, for DQN, it is about 39.75 seconds. This shows that 

A3C is approximately 43.86% faster than DQN in terms of the average time taken for 

agent evacuation. This percentage reflects the significant efficiency advantage of A3C 

over DQN in this scenario. The better efficiency of A3C compared to DQN can be 

attributed to the asynchronous learning process. In this case, the agent was learning and 

updating the strategies every time it finished using the DQN algorithm and policy, while 

A3C has multiple threads to learn and update its strategies simultaneously, which is 

significantly faster than DQN in terms of the speed of exploring the environment and 

learning the policy. 

Figure 19. Average Time Taken for Agent Evacuation Static Threat 

Environment 
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Moreover, from the learning curve aspect, A3C and DQN do show a different 

number of episodes required for the agents to reach a stable evacuation strategy. The 

learning process of both A3C and DQN algorithms was analyzed across various 

environments, including scenarios with single agent static threats, single agent moving 

threats, and multi-agent contexts. This comprehensive analysis was designed to assess 

how each algorithm adapts and optimizes its strategy in response to different types of 

challenges. 

For the single agent static threat environment, the result illustrates that both A3C 

and DQN displayed a similar pattern in the learning curve. The static nature of the threat 

allowed both algorithms to quickly learn and devise effective strategies. However, A3C 

has maintained a slight edge in terms of quicker strategy optimization, as indicated by its 

steeper learning curve in the initial episodes. The stable evacuation strategy was reached 

at around 100 to 200 episodes for A3C algorithm, while for DQN, the stable evacuation 

strategy was reached at around 200 to 300 episodes in this single agent static threat 

environment (Figure 20). This may be due to DQN's inherent learning mechanism, which 

might require more iterations to effectively capture and respond to the environmental 

parameters in this scenario. 
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Figure 20. Average Reward Comparison in Single Agent Static Environment 

Moving Threat Environment 

In the single agent moving threat environment, the learning curves show a more 

notable difference in the efficiency and how each algorithm deals with the dynamic 

threats in the airport. A3C's response was swift and showed a rapid decrease in 

evacuation time as the agent started to learn and navigate in order to avoid the moving 

threat efficiently. While DQN took longer time to adapt and form a stable evacuation 

strategy compared to the swift learning process of A3C as seen in the gradual slope of the 

learning curve (Figure 21). 
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Figure 21. Average Reward Comparison in Single Agent Moving Environment 

Compared to the learning curve of static threat environment setting, the results 

generated in moving environment are more volatile, while the learning curves in static 

environments exhibited a relatively smooth progression towards stability. In the moving 

threat environment, both A3C and DQN displayed learning curves with significant 

fluctuations. And this was characterized by periodic increases and decreases in the 

algorithms' learning curve across episodes, indicating a continuous process of adaptation 

and re-adaptation to the changing positions and patterns of the moving threat as the fire is 

enlarge itself and spreads in a specific pattern. This indicates the capability of the 

continuous learning process of A3C, which could quickly adapt to the ever-changing 

environment that includes the threat that needs to be avoided. Moreover, the fluctuations 

in the learning curve align well with the concept of A3C algorithm, which enables rapid 
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response and adaption to the surrounding environment and the moving threat but can lead 

to some temporary performance dips as the new strategy is being adapted and 

implemented. 

Multi-agent Environment 

The multi-agent environment presented a more complex challenge. A3C's 

asynchronous characteristic provides more advantages in this scenario, which allows 

multiple agents to learn simultaneously and synergistically. This led to a more efficient 

learning process, as reflected in the steeper learning curve (Figure 22). DQN, while 

effective in learning cooperative strategies, exhibited a slower convergence, indicated its 

limitations in handling simultaneous learning tasks like the multi-agent evacuation 

mission. 

Figure 22. Average Reward of A3C in Multi-Agent Environment 
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Compared to DQN, A3C's strength in a multi-agent environment comes from its 

asynchronous learning mechanism. This unique feature allows multiple agents to explore 

and learn from the environment independently while contributing collectively to the 

overall learning process. This approach not only accelerates learning but also forms faster 

development of strategies among multiple agents, where the experiences of one agent can 

indirectly influence and enhance the learning of others (Figure 23). The experiments 

demonstrate that effective cooperative strategies are achieved more rapidly and 

efficiently, as shown by the steeper learning curve. 

Figure 23. Average Reward Comparison in the Multi-Agent Environment 

Although DQN is capable of formulating cooperative strategies, it faces 

challenges in the multi-agent context. Its learning mechanism, which is more linear and 

singular in approach, struggles with the simultaneous learning tasks required in this 

environment. The convergence towards effective cooperative behavior is slower, 
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indicating a limitation in its ability to quickly integrate and adapt to the diverse 

experiences of multiple agents. 

The results indicate that A3C's asynchronous and concurrent learning capabilities 

offer significant advantages in dynamic and complex multi-agent environments where 

rapid adaptation and coordination among agents are crucial. This is particularly relevant 

in scenarios such as collaborative robotics and multi-agent simulations where efficient 

and cooperative strategy development is key. A3C’s adaptability in multi-agent 

environments also illustrated its potential for environments that are not only dynamic but 

also unpredictable, like the airport which has multiple agents (passengers) and moving 

threats. Its ability to quickly accept new information and adjust the strategies accordingly 

makes it a robust choice for scenarios where environmental conditions or agent roles may 

change rapidly. 

In summary, a significant difference was observed in the learning curves of the 

A3C and DQN algorithms when comparing them in static threat environments, moving 

threat environments, or multi-agent environments. Across all environments, A3C 

consistently demonstrated a more robust and faster learning process compared to DQN 

for finding optimal evacuation paths and reducing evacuation time. These results are 

attributed to A3C's ability to handle asynchronous updates and adapt to dynamic 

environments more efficiently. However, while DQN demonstrates proficiency in less 

complex scenarios, such as the single-agent static threat environment, it still lags behind 

in more complex environments. Therefore, it requires rapid adaptation and multi-agent 

coordination, similar to the A3C algorithm.  
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Section 5: Conclusion and Discussion 

In this study, we have successfully bridged the gap identified in the literature 

review regarding the practical application of advanced computational models, specifically 

of the A3C algorithm, in simulating real-world evacuation scenarios. Our comparative 

analysis of the A3C and DQN models in simulating airport evacuations revealed that 

A3C outperforms DQN in several key areas: 1. Efficiency in Evacuation in terms of 

speed and correctness, 2. Adaptability to Dynamic Environments, and 3. Robustness in 

Learning and Strategy Adaptation. Notably, A3C demonstrated superior adaptability and 

efficiency in managing dynamic threats and high-density environments, which are 

characteristic of real-life aviation emergencies. A3C's proficiency in adapting to changing 

conditions was particularly effective in scenarios with moving threats, highlighting its 

practical advantage in unpredictable situations. Moreover, the A3C model facilitated 

faster evacuations and managed high-density crowds more effectively, reducing 

bottlenecks and ensuring smoother evacuation flows. It also exhibited a robust learning 

curve and adapted its strategy efficiently in response to environmental changes which 

was less efficient in the DQN model. 

The findings from our comparative analysis have profound implications for 

transportation safety and policymaking. This study suggests that A3C is generally more 

versatile and efficient in various environmental settings, especially in scenarios that 

require quick adaptation and multi-agent learning. A3C's adaptability in dynamic 

environments, such as those with moving threats, and its effectiveness in multi-agent 

scenarios, highlight its potential for complex real-world applications where diverse 
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challenges are present. The study emphasizes the significance of choosing an appropriate 

algorithm for specific environmental challenges. For instance, the evacuation mission at 

the airport is a complex and constantly changing scenario. A3C is a particularly strong 

algorithm for dynamic real-world applications that require quick decision-making ability 

and adaptability due to its emerging speed, accuracy, and efficiency. 

By illustrating A3C's effectiveness in managing dynamic threats and facilitating 

smooth evacuation flows, our study advocates for the integration of advanced 

computational models into the emergency response strategies of airports and other critical 

infrastructure. For policymakers and emergency planners, adopting A3C-based 

simulations can lead to more informed decision-making, enabling the design of 

evacuation protocols that are both safer and more efficient. Furthermore, these results can 

guide the development of policies that prioritize investments in technology-driven safety 

improvements, ensuring that transportation systems are resilient against a wide range of 

emergency scenarios. Utilizing the rapid adaptability of machine learning algorithms like 

A3C, the modern transportation system could dynamically optimize the shortest and 

safest evacuation routes in real time when emergency situations happen. The optimization 

could not only be applied to airport evacuation, but also expands to natural disasters or 

urban crises in an area. A3C’s ability to adapt quickly to the changing environment such 

as traffic congestion, road closures, or hazardous conditions can allow the agents (e.g., 

passengers, pedestrians, vehicles etc.) to reroute efficiently for a safer and less congested 

path. Also, the algorithms including A3C and DQN as used in this research can be used 

for simulation and training in the transportation industry to save time and money when 

determining the best evacuation method under different emergency scenarios. These 
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simulations can assist with training personnel in the industry, thus helping the company 

improve their evacuation regulations and plans and ensure a more effective response 

during actual emergencies. Moreover, A3C can also be implemented in intelligent traffic 

systems to manage and control traffic flow during emergencies. Its capability to process 

multiple agents and data simultaneously enables quick and real-time adjustments for 

traffic signals, lane assignments, etc. so that the intelligent traffic system can facilitate 

smoother evacuation or emergency response. 

However, there are still limitations to the algorithms and research. One limitation 

is the computational resources required for complex and multi-agent scenarios. The 

computational demands of the A3C algorithm present a significant challenge, especially 

when scaling to extremely large or complex simulations. This may limit its applicability 

in resource-constrained environments or necessitate substantial investments in 

computational infrastructure. Additionally, our simulations may not fully capture the 

unpredictability of human behavior in emergency situations, potentially affecting the 

real-world accuracy of our findings. The reliance on specific simulation parameters also 

raises questions about the generalizability of the results across different types of 

emergencies or transportation settings.  

For the future directions, combining the SF model with evacuation algorithms and 

models could lead to further improvements. The SF model takes into account individuals' 

preemptive path adjustments in response to anticipated social interactions, not just 

physical constraints. This integration would result in more accurate simulations of crowd 

behavior, optimizing evacuation strategies and enhancing safety in complex airport 

environments. This could include average physical dimensions for men, women, and 
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children, as well as the moving speed of different age groups. By incorporating these 

features, the model will be closer to reality and better equipped to handle emergency 

situations. Last but not least, to make the model more accurate and efficient for 

emergency situations at airports, it may be beneficial to consider adding dimensions for 

human width and evacuee speed. Incorporating more complex and realistic elements into 

the simulation, such as varying human behavior patterns, complex architectural features, 

and unpredictable environmental conditions, would more closely mimic real-world 

scenarios. With further work, the model could have a broader scope that meets the 

requirements of complex real-time decision-making. 
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